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Abstract—High-cost and physical-limitations limit the use of
Electroencephalogram sensing (EEG) with respect to Affective
Computing. Wrist-worn Wearable health devices, an intriguing
alternative, are becoming cheap, inconspicuous, and common-
place - driving down the cost of heart-rate, accelerometer,
respiration, and similar sensing. In this paper, we describe a
quantitative empirical study investigating the use of low-cost
sensing as a replacement for EEG. Our results show significant
correlation between wrist-sensed, low-cost physiological data
features and established EEG measures of emotion and cognition.
This work demonstrates the value of inexpensive sensors capable
of inferring emotion and cognition in a wrist-worn form-factor.

Index Terms—physiological sensing, emotion, cognition, Affec-
tive Computing

I. INTRODUCTION AND MOTIVATION

Electroencephalogram sensing (EEG) enables many Affec-
tive Computing interfaces by providing direct measurements of
brain activity and thus insight into user emotion and cognition.
This said, EEG’s high-cost, long setup times, sensitivity to
head and body movement, and uncomfortable form factor limit
its applicability in many circumstances.

Consumer-grade, wrist-worn wearable health tracking de-
vices (e.g. from FitBit, Garmen, Apple, Samsung, Google)
represent an intriguing alternative to EEG. The large and
growing consumer market for these devices is driving down the
cost of and increasing the availability of physiological sensing
such as heart-rate, accelerometer (ACC), respiration, galvanic
skin response (GSR), and the like. While health tracking
devices aim to use this data to provide consumers with insights
into their health and activities, we hypothesize that these same
sensors can be used to provide Affective Computing systems
insight into users’ cognition and emotional state. Prior efforts
into inferring emotion and cognition from physiological data
have reported mixed results; however, there are reasons to be
optimistic. Prior work has shown a correlation in some circum-
stances between cognitive load and biometric measurements
[1]–[6] as well as detectable changes in physiology based on
certain emotions [2], [3], [7]–[15].

In this paper, we present an exploratory study in which
we use low-cost physiological sensing as an alternative to
high-cost EEG sensing. After an overview of prior efforts,
we then describe the data-collection process and the pairing
of physiological measurements with ”Ground Truth” labels
of cognition and emotion as reported by a commercial EEG

device. This labeled physiological data is then used to train a
model, the performance of which is evaluated and shown to
be in-line with the EEG device itself.

II. RELATED WORK

Emotions are complex, and a major challenge when study-
ing this field is how to elicit specific emotions in a laboratory.
Databases such as DEAP [7], MAHNOB-HCI [8], IAPS [16],
and IADS [17] facilitate research by providing emotionally
labeled stimuli; however, the validity of such collections of
labeled stimuli has been questioned. Many have noted that
one’s emotions are not constant and that they not only vary
in intensity but also are effected by one’s environment, mood,
experiences, recent stimuli, and so on. One study [9] noted
the ”large variability in emotional ratings [of stimuli among]
participants”, adding that DEAP videos did not induce strong
emotions and that MAHNOB-HCI produced emotions that
were unaligned with labels. With respect to IAPS and IADS,
the expected and elicited emotions vary significantly [18] and
stimuli often fail to elicit any emotional response at all [10].

EEG’s ability to classify emotions and cognitive states
is well established and provides the sensing backbone of
numerous research projects. EEG headsets (e.g. [2]) ship
with software that (while proprietary) provides validated mea-
surements of emotion and cognition and have been used to
investigate such topics as the emotional effects of music
[11] and video games [12]. While an EEG’s scalp electrodes
provide direct measurements of the brain’s electrical activity,
the technology is relatively high-cost, is prone to failure
due to head-movement and eye blinking [19], and is often
uncomfortable - qualities that limit EEG’s applications.

Of particular relevance to this paper are efforts into using
non-EEG physiological sensors to infer emotion and cognition.
With respect to these less-expensive options, the results from
prior work have been mixed. Magdin et al. [15] measured
classification accuracy with a commercial video-based tool and
observed a small increase in accuracy when they augmented
video with with heart-rate and GSR measurements. Gupta
et al. [3] paired EEG measurements with GSR and heart-
rate variance (HRV) to measure trust in a virtual agent and
cognitive load while interacting with it. While EEG proved
useful in predicting cognitive load, they found no predictive
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Fig. 1. Wearable devices and the placement of the E4 and the Emotibit.

power from physiological measurements. In a larger follow-
up study [4], EEG was again helpful in measuring cognitive
load, HRV provided no insight and GSR provided only limited
predictive power. In contrast, Shi et al. [5] and Khawaji et al.
[6] showed preliminary success in estimating cognitive load
from GSR signals in some circumstances.

Szwoch [10] reports on a preliminary investigation into
physiological signal analysis using participants’ blood volume
pulse (BVP), skin temperature (T), breathing (Resp), skin
conductance (SC), and muscle movement (EMG). Only three
features derived from BVP and SC were found to support
emotion classification. Godin et al. [9] performed a highly-
relevant analysis of both the DEAP and MAHNOB datasets
that achieving similar emotional classification results to prior
attempts [7], [8] but did so using only a small number of the
most relevant physiological-derived features. The authors point
out that their (and previous) classification accuracy is ”only
slightly higher than random classifiers.” They continue by
noting that even the highest correlations between physiological
sensor data and labeled emotion in the datasets were low.

III. EXPLORATORY STUDY

Our original plan was to perform this exploratory study
using a collection of wrist-worn, commercial health-tracking
wearables; however, the many devices we investigated all
limited direct access to data collected by some or all of
their sensors. As such, we settled on two wearable devices
that include similarly inexpensive sensors but are targeted
at researchers working in this area - the Empatica E4 [20]
(Fig.1a) and the Emotibit [21] (Fig.1b).

The E4 shares the same form-factor as many COTS devices
and fits on the wrist of one’s non-dominant hand (Fig.1c).
Its collection of sensors provide real-time measures of heart
rate variability (HRV), skin temperature, electrodermal activity
(EDA), heart rate (HR), inter-beat interval (IBI), blood volume
pulse (BVP), and 6 degree of freedom (DOF) accelerometer
(ACC) data. The Emotibit is a flexible form-factor in respect to
placement. While the index finger is not ideal for a deployed
system (Fig.1c), we found that this location provided the best
data quality when paired with the wrist-worn E4 and freed
the dominant hand for interacting with experimental activities.
The Emotibit provided a similar collection of sensors, adding
humidity and a 9-axis IMU.

The use of two physiological devices in this work provided
several benefits. Firstly, low-cost sensors often do not have the
accuracy of medical-grade devices. For example, as shown
in Fig.2b, sensors exhibit noise and drop-outs. The use of
multiple sensors measuring the same physiology can help

Fig. 2. Examples of the same measurement from the E4 and the Emotibit.

compensate for such missing data and bias from the sensors
themselves or their placement. In other cases, ”redundant”
measurements may be highly-correlated between devices (e.g.
skin-temperature in Fig.2c). In this case, different sensor
positions result in different temperature profiles which should
aid computational modeling.

Prior work has pointed out the difficulty of synchronizing
physiological signals from multiple devices [3]. Because our
devices were worn on the same hand, we were able to register
timestamps from these independent devices by aligning peaks
in their ACC data (Fig.2a).

As discussed previously, our goal was to attempt to model
the cognitive and emotional measurements provided by a
COTS EEG headset using only low-cost physiological data.
We chose the Emotiv EPOC X [2] as our ground-truth device.
The EPOC X is a 14-channel wireless EEG that is paired
with software libraries to provide six calculated inferences
of emotion and cognition - engagement, excitement, focus,
interest, stress, and relaxation.

1) Participants: We recruited 7 volunteers (gender: 4 fe-
males and 3 males, Age: 31 ± 9) from within our organization.
One volunteer participated on three different days and two
volunteers on two different days, for a total of 11 sessions.

2) Stimulus: Each session consisted of two activities. The
first activity was passively watching two music videos, which
were selected to elicit different emotional responses. One
contained calming music with scenes of nature, the other
heavy-metal music with frenetic imagery. The second activity
was a standard assessment of working memory in cognitive
neuroscience named N-back [22]. In this game, participants
view an image sequence and respond whenever the currently
presented image is the same as the one presented N steps ago
in that sequence. Our game sessions included 1, 2, and 3-back
sequences giving us a range of cognitive demands.

3) Summary of the Collected Data: Overall, we collected
multivariate time series data from each session for all varia-
tions of the game and video activities. Recorded physiolog-
ical variables included 3-axis Accelerometer (ACC), Blood
volume pulse (BVP), skin temperature (TEMP), electroder-
mal activity (EDA), heart rate (HR) and inter-beat interval
(IBI) signals from the E4 and ACC, EDA, 3-axis Gyroscope
(GYR), 3-axis Magnetometer (MAG), Photoplethysmography
(PPG), TEMP and Humidity signals from the Emotibit. EEG
derived ”Ground Truth” scores for engagement, excitement,
frustration, focus, stress and relaxation were collected from
the Emotiv and its included software libraries.
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Fig. 3. t-SNE plots of the Music Video session and the Game session in a
2D visualization. The datapoints were sized by the timestamp. The smaller
the size, the earlier the time.

IV. ANALYSIS AND RESULTS

A. Data Segmentation and Physiological Settling Time

As our sensors were running independently over the course
of each session, the first step in our analysis was to accurately
align and segment our data so that we could focus on mean-
ingful portions and ignore periods during or near transitions
between tasks.

Participants were asked to raise their hand before and after
each activity - creating a large spike in acceleration that is
easily identified (Fig 2a). These peaks allowed us to align the
independent time stamps reported by each device and served
as a course break between session activities.

With this coarse segmentation in place, we initially applied
an unsupervised learning algorithm, t-distributed stochastic
neighbor embedding (t-SNE), to the entirety of all segments
in order to visualize the extracted physiological features in a
2D space, as shown in Fig.3a (additional details on feature
extraction are in the next section). Clear clusters emerged in
the plots; however, rather than the expected two clusters for our
two video conditions and three clusters for our three gaming
conditions, we observed four and six clusters respectively.
Only after visualizing the timestamps of these datapoints did it
become clear that the extra clusters consisted of data from the
start of each session (Fig.3b). We hypothesize that this period
represents a ”Physiological Settling Time” during which a
participant’s physiology is adjusting to new stimulus. As such,
we adjusted the start and end time point in the t-SNE plot so
that there were only two clusters for video and three clusters
for gaming data, giving us an optimal boundary between each
task. These boundaries were then applied to our ”Ground
Truth” EEG measurements before further analysis occurred.

B. Feature Extraction and Data Cleaning

With respect to feature extraction from our multivariate
time-series sensor data, in all cases we first applied an eight-
second sliding window with a time step of one second.
We chose this window by ablation studies after taking into
consideration the response delay of physiological signals.

For ACC, GYR, and MAG data, we extracted basic statisti-
cal features in each axis, including mean, standard deviation,
number of peaks and entropy. Similarly, we extracted basic
statistical features from the TEMP and humidity.

The EDA-based features reflect activities of the sympathetic
nervous system, as measured by the skin conductance derived

from microscopic changes in the level of perspiration on the
skin surface. Previous studies suggest that EDA measurements
were closely related to the detection of emotional changes and
engagement [23]–[25]. The EDA signal includes two types of
changes, a phasic change, in which rapid changes in EDA
responses occur and a tonic change, in which smooth and
gradual changes in EDA responses occur. We decomposed
the EDA signal into phasic and tonic data following [26] and
extracted statistical features, such as number of peaks, mean,
standard deviation, and min/max from each type of change.

HRV is a physiological phenomenon of variation in the
time interval between heartbeats and is often used to evaluate
human emotion and cognition performance [27], [28]. We
extracted the HRV-based features from both the time and
frequency domains. For example, in the time domain, we
extracted basic features such as mean, min, and max. Features
that reflected long-term effects, such as the standard deviation
of successive differences (SDSD) and the number of consec-
utive interval pairs that differs by more than 50 ms (NN50)
could also be extracted. We computed the frequency data by
applying the Fast Fourier Transform (FFT) where features,
such as the power within different frequency bands and the
ratio of the low frequency power to the high frequency power,
could be extracted. In addition, we calculated non-linear EDA
features, such as SD1 and SD2 and basic statistical features,
such as mean, stdev, and number of peaks in the IBI signal
according to [29].

In addition to the six measurements of emotion and cogni-
tion, our EEG sensor reported continuous measures of signal
quality. After calculating physiological features, we discarded
time points during which EEG quality fell below 80% to
ensure the reliability of our ”Ground Truth” labels. Missing
data was replaced with the mean value for that feature and
all data was scaled to [0,1] using min-max normalization.
After all segmentation and feature extraction, we continued
our statistical analysis with a total of 4020 data-points for
video sessions and 1800 data-points for game sessions.

C. Examining ”Ground Truth”

As discussed in II, problems arise with stimulus labels as
identical stimulus can evoke different emotions from different
people or even different emotions from the same person at
different times. As such, we designed our investigation to use
established EEG measurements of six emotional and cognitive
scores as ”Ground Truth” labels. We did not attempt to
validate the EEG’s measurements themselves; rather, we were
interested in whether or not the EEG demonstrated an ability
to distinguish among our stimuli using these six measures. If
our ”Ground Truth” EEG measurements could not themselves
correctly discriminate calming vs. rock music videos or three
distinct levels of gaming difficulty, then modeling these mea-
surements using low-cost physiological data would be useless.

To test the discriminative power of the ”Ground Truth”
EEG measurements, we performed an ANOVA on all pairs
of stimuli. Table I shows probability-values for each pairwise
comparison of mean EEG emotion and cognition scores for
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Fig. 4. The correlation plot of a testing participant on the prediction of the
Excitement score for the Music Video session using the full time series (a)
and a short time series that getting rid of the transition time (b). The red circle
represent rock music, the blue soft music. The size of the circles stands for
the time series. The smaller the size, the early the time.

each of our experimental activities. With respect to the two
video conditions, EEG measures of Excitement and Interest
appear significantly different between calming and rock music.
With respect to the three gaming conditions, N-Back levels
1, 2, and 3 all appear distinguishable by EEG measures of
Engagement, Stress, and Focus. We continued our analysis
of low-cost physiological data focusing on these activity-
measure combinations.

D. Machine Learning Models

With segmented and trimmed time-series data matched with
EEG-derived measures of emotion and cognition, we began
the construction of our ML models – mapping low-cost phys-
iological data to our ”Ground Truth” measurements. A each
time point in our data-set, we had a total of 184 physiological
features and the EEG’s corresponding cognitive (i.e., Focus,
Stress and Engagement) and emotional (i.e., Excitement and
Interest) scores. Our approach to model building was three-
fold - select the most important features, train a linear regres-
sion model on those features, and evaluate model performance.
All analysis in the following sections was performed using the
scikit-learn packages in Python 3.6.

1) Feature Selection: An ensemble gradient boosting re-
gressor was used to select the top-k important features in the
data. We chose mean square error (MSE) as the loss function
and performed a cross-validated grid-search to determine the
number of trees, the learning rate, and the tree depth. This
process resulted in an importance score for each feature that
indicates its value in building decision-trees within the model.

We found that HRV-related features were good indicators
of the Focus score while EDA-related features were good
predictors of the Excitement and Stress scores. Additionally,
the Engagement score and the Interest score were more
correlated with ACC-related features and HR-related features.

2) Model Training and Performance: We investigated sev-
eral techniques, but settled on linear regression due to its solid
performance in this task and the relatively small size of our
data-set. We predicted Excitement and Interest for the music
video activities as well as Focus, Engagement, and Stress for
the game activities from the top-k selected features.

The results of these tests are shown in Table II, column
Whole. The average and the standard deviation of each met-
ric were calculated based on Leave-one-person-out approach.

Fig. 5. The correlation plot of a testing participant using the full time series on
the predictions of the Focus score (a), the Stress score (b) and the Engagement
score (c) for the Game session. The green circle stands for 3-back, the red
circle stands for 2-back and the blue circle stands for 1-back. The size of the
circles stands for the time series. The smaller the size, the early the time.

These results indicate that the predictions derived from the
low-cost physiological sensors were correlated with the ground
truth as reported by the EEG headset. Specifically, for the
music video activities, the prediction for the Excitement score
achieved a correlation (R) of 0.509 and a mean absolute error
(MAE) of 0.150, followed by the prediction for the Interest
score with a R of 0.330 and an MAE of 0.226. For the Game
activities, the prediction for the Focus score achieved a R of
0.374 and an MAE of 0.159, followed by predictions for the
Engagement score with a R of 0.340, an MAE of 0.226 and
for the Stress with a R of 0.316 and an MAE of 0.268.

Fig.4a shows a correlation figure for one of our participants
in the music video activity, although the following description
applies generally to almost all of our collected data. Upon
examining Fig.4a, we again noticed that the largest errors
occurred at the beginning and end of each activity. Fig.4b
shows an improved correlation figure in which a shorter
time period was used, effectively removing the physiological
transition time from the analysis. Table II, column Short,
shows the improved results when only data from this shorter
time period was used for modeling. The improved correlation
scores were statistically significant for Excitement and Interest
in the music video activity and for Stress in the game activity.

V. DISCUSSION

We collected low-cost bio-metric measurements from two
devices along with established high-cost EEG ”Ground Truth”
measurements and built Machine Learning models to map one
to the other. Our results suggested that features extracted from
low-cost, wrist-worn sensors have the potential to be used as
valid predictors of emotional and cognitive states.

A. Emotional and Cognitive Predictions

The Emotiv headset gave six scores in real-time as the
ground truth and after the ANOVA test in Table I, only
the Excitement score and the Interest score for the Music
Video session and the Focus, the Stress and the Engagement
scores for the Game session showed significant differences in
music types and n-back difficulty, so we used the extracted
features to predict these five scores. Specifically, as shown in
Table II, the linear regression model predicted the Excitement
score for the music session with a correlation of 0.509 and
an MAE of 0.150. The results of one randomly selected
participant were plotted in Fig.4a and all other participants
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TABLE I
THE ANOVA TEST RESULTS ON THE GROUND TRUTH SCORES. THE COMPARISONS ARE SIGNIFICANT IF p < 0.05, HIGHLIGHTED IN BOLD.

Session Class Engagement Excitement Stress Relaxation Interest Focus
Music Video Soft & Rock p = 0.079 p = 0.001 p = 0.204 p = 0.900 p = 0.001 p = 0.344

Game 1-back & 2-back p = 0.033 p = 0.900 p = 0.001 p = 0.666 p = 0.155 p = 0.012
1-back & 3-back p = 0.001 p = 0.083 p = 0.001 p = 0.009 p = 0.001 p = 0.001
2-back & 3-back p = 0.001 p = 0.031 p = 0.0029 p = 0.001 p = 0.001 p = 0.001

TABLE II
LINEAR REGRESSION RESULTS FOR Excitement, Interest, Focus, Stress AND Engagement SCORE PREDICTIONS ON THE TEST SET (MEAN ± STD BASED ON
LEAVE-ONE-PERSON-OUT APPROACH). WHOLE STANDS FOR THE WHOLE TIME SERIES, AND SHORT STANDS FOR THE TIME SERIES AFTER REMOVING

THE TRANSITION TIME. * MEANS THE COMPARISON BETWEEN WHOLE AND SHORT IS STATISTICALLY SIGNIFICANT (p < 0.05).

Measurement R MAE
Whole Short Whole Short

Music-Excitement 0.509 ± 0.056 0.615 ± 0.042 * 0.150 ± 0.053 0.131 ± 0.032 *
Music-Interest 0.330 ± 0.026 0.428 ± 0.019 * 0.226 ± 0.041 0.122 ± 0.026 *
Game-Focus 0.374 ± 0.045 0.372 ± 0.031 0.159 ± 0.027 0.158 ± 0.022
Game-Stress 0.316 ± 0.098 0.332 ± 0.087 * 0.268 ± 0.092 0.229 ± 0.078 *

Game-Engagement 0.340 ± 0.057 0.337 ± 0.034 0.226 ± 0.051 0.228 ± 0.039

showed similar results. The figure showed that the model
could classify different time points into discriminative rock
and soft clusters, with participants in the rock music session
predicted to have higher arousal, which is consistent with the
physiological phenomenon and previous studies [30]. The size
of the circles in the figure represents the time sequence order;
the smaller the size, the earlier the time. It is worth noting
that the prediction error occurred mainly at the beginning and
end of each session, i.e., the transition time between each
session, although we have previously segmented the data to
try to mitigate this effect, as shown in as shown in Fig.3. This
finding is consistent with previous studies that physiological
responses often take time to change after the arrival of a
new stimulus [31]. Therefore, we further shortened each time
session to get rid of these transition time, which gave us a
significantly improved correlation of 0.615 and MAE of 0.131.
Fig. 4b clearly shows the better prediction results. The same
was true for the Interest score prediction. After getting rid of
the transition time, the model improved significantly by from
0.330 to 0.428 in correlation and from 0.226 to 0.122 in MAE.

For the Game session, the model predicted the Focus score,
the Stress score and the Engagement score with a correlation of
0.374, 0.316 and 0.340 and an MAE of 0.159, 0.268 and 0.226,
respectively. One reason for the slightly worse results for the
Game session compared to the Excitement score for the Music
Video session was the short duration of the experiment. Each
n-back game only took 1-2 minutes, which was not enough for
the transition time, so it was difficult for participants to fully
engage in each game. Notably, even with a short experimental
time, the model predicted a good correlation with ground truth
scores and classified the game with different complexity N as
shown in Fig.5. However, experiments on shortening each time
period showed significant improvements only in the prediction
of Stress scores (R = 0.332, MAE = 0.229), while the results
were even worse in the prediction of Focus (R = 0.372, MAE
= 0.158) and Engagement scores (R = 0.337, MAE = 0.228).

It is interesting to note that our predictions had even more

discriminative results than the ground truth when distinguish-
ing between different time periods. For example, as shown
in Fig. 4, for this randomly selected test participant, the
distribution of the ground truth Excitement score was 0.215
± 0.133 on the soft music session and 0.441 ± 0.160 on the
rock music session while the predicted Excitement score was
0.265 ± 0.068 on the soft music session and 0.589 ± 0.140
on the rock music session. The means of the predicted scores
for different music types were more discriminating, while the
standard deviation values were smaller, which indicates that
the physiological sensors may be more robust than the EEG
headset. The same is true for the Game sessions. For example,
as shown in Fig. 5b, the standard deviations of the ground truth
Stress score on N = 1, 2, 3 were 0.162, 0.174, and 0.178
respectively while those of the predicted Stress score were
0.053, 0.050, and 0.022.

B. Threats to Validity and Future Work

As with all investigations, there are threats to the validity of
this paper that the reader should be aware of. With respect to
internal validity, it became clear to us during the analysis of
our data that our session durations were too short. As others
have also found [31], physiological measures have a time delay
as different systems in our bodies respond at different time
constants to stimuli. The need for longer sessions in order
to allow physiology to ”settle” before measurement must be
balanced with the discomfort participants felt while wearing
the EEG headset, discomfort that may have itself interfered
with emotion and cognition.

With respect to external validity, the relatively small sample
size of this investigation (7 individuals, 11 sessions) limits its
impact. While we achieved our research goal of demonstrating
the value of this sensor suite, clearly a larger sample is needed
to confidently provide concrete recommendations for system
design. The sample size also limited appropriate modeling
methods. While we achieved significant results with a linear
regression model, we hoped to improve these results using
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Random Forests and 1D Convolutional Neural Networks in our
ablation studies. With these techniques, overfitting occurred
due to the large hyperparameter space and small sample size.
Future work clearly requires collecting data from a larger
population. Looking ahead, while we found value in using a
pair of partially redundant sensors, future work should include
multiple sensors and investigation into their optimal placement
on the body for the task at hand. Finally, as others have pointed
out [9], emotion and cognition are complex phenomenons
that are difficult to label absolutely. Our exploration aimed to
model EEG’s reported measures, a goal we partially achieved;
however, nothing in the nature of low-cost physiological
sensors can add to the outstanding questions of the accuracy
of the labels themselves.

VI. CONCLUSION

This paper presented the approach to building the perfor-
mance of a linear regression model capable of mapping phys-
iological signals measured by low-cost, wrist-worn, consumer-
grade devices to cognitive and emotional measurements of
excitement, focus, engagement and stress. We are happy to
report that the model’s inferred measurements were in-line
with those reported by a more expensive, more cumbersome
EEG headset and at times demonstrated greater discriminatory
power than the EEG itself. Through this exploratory work, we
feel confident that there is value at the low-end of sensing
when it comes to supporting Affective Computing and that
wrist-worn devices are an appropriate form-factor for such
sensing. We are motivated to continue this line of research
through future large-scale research studies.
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