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Figure 1. (a) GhostID prototype with a 10-inch capacitive sensor; (b) two touches from the same hand produce touch points (red
and yellow) and ghost signals (dark blue); (¢) two touches from two different users produce touch points but no ghosting.

ABSTRACT

Current touch devices are adept at tracking finger touches,
but cannot distinguish if multiple touches are caused by
different fingers on a single hand, by fingers from both hands
of a single user, or by different users. This limitation
significantly reduces the possibilities for interaction
techniques in touch interfaces. We present GhostID, a
capacitive sensor that can differentiate the origins of multiple
simultaneous touches. Our approach analyzes the signal
ghosting, already present as an artifact in a frequency-
division touch controller, to differentiate touches from the
same hand or different hands of a single user (77% reliability
at 60 fps) or from two different users (95% reliability at
60 fps). In addition to GhostID, we also develop a framework
of user-differentiation capabilities for touch input devices,
and illustrate a set of interaction techniques enabled by
GhostID.
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INTRODUCTION

The commoditization of multi-touch input has enabled
device form factors ranging in size from 1” smart watches to
25" public displays. While a number of technologies have
been used to detect touch input (e.g., resistive, optical,
acoustic, etc.), capacitive touch sensing has come to
dominate the commercial sphere.

As devices increase in scale, the likelihood and utility of
multiple simultaneous users also increases. For example, the
research community has repeatedly demonstrated the
advantages of single-display groupware in tabletop and large
display contexts [3, 10, 26, 27, 38]. Despite the benefits, there
remains an important obstacle to commercial deployment in
many contexts—the inability, without external hardware, to
consistently differentiate between touches belonging to
different users [19, 23, 30, 34, 40]. A lack of user
differentiation can break well-understood user interface
metaphors, such as finger painting [44]: when a single user
selects a paint color, that color is then applied to all current
users. In addition, further differentiation at the hand level (i.e.,
do a pair of touches come from two fingers on a single hand,
or from one finger on each of a user’s hands?) has also been
shown to be beneficial [9, 16, 28]. To the authors’ knowledge,
no commercial devices are able to consistently differentiate
multiple simultaneous touches at any level of precision.

To address this limitation, researchers have attempted to
design systems that can differentiate touches from multiple
users. Some systems augment touch sensing with other
sensors, such as cameras [16, 36], fiber optics [12], or
proximity sensors [2]. Others augment touch sensors with
user-specific signal emitters [7, 18, 19, 34]. While each of
these techniques can identify touch origins, the need for
additional sensors or external augmentation limits their use
cases. An ideal solution for user differentiation would be to
enable the capacitive sensor itself to differentiate touches,
without the reliance on external hardware.
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In this paper, we propose a novel method to differentiate the
touches from different hands of a single user, as well as
touches from multiple users. The technique is based on the
frequency-division multiplexing (FDM) capacitive sensing
demonstrated in Leigh et al.’s Fast Multi-Touch (FMT)
device [20]. While the primary purpose of FMT was to
enable higher frame rates to achieve low-latency sensing, we
have found that its unique approach is also well suited to
touch differentiation.

A bare capacitive sensor is composed of rows and columns
of conductive material. To sense multi-touch input, an FMT
system injects orthogonal signals into each row. When a user
touches the sensor, their finger will capacitively couple one
(or more) rows to one (or more) columns. If a single user
touches the sensor in multiple locations, each touch point
produces its own coupling of rows and columns. However,
because humans are conductive, some of the signals will
travel through the hand and into the body of the user. If the
user places a second finger on the sensor, these conducted
signals will be received alongside the intended signals. The
weaker, conducted signals produce faint “ghost” points on
the sensor that do not correspond to actual touches.

Leigh et al. view these ghosts as noise, because they do not
correspond to actual touches, and therefore filter them out to
produce a reliable sensor. However, rather than minimizing
and/or simply discarding them, we explicitly use them to
differentiate touch origin. If a ghost is present, we know the
touch must come from the same user who is already touching
the sensor at the position where the ghost signal originated.
Moreover, we can use the strength of the ghost signals to
detect whether two touches are from the same or different
hands of the same user.

The GhostID prototype, shown in Figure 1(a), consists of a
touch controller implemented on a field-programmable gate
array (FPGA) that drives an opaque copper-mesh touch
sensor. The controller utilizes FMT principles, except
ghosting is not filtered out as noise by the controller.

Our post-processing algorithms can discriminate two touches
as coming from the same or different users with 95%
precision. Similarly, they can discriminate two touches as
coming from one or two hands of a single user with 77%
precision. In this paper, we describe our processing pipeline
in detail, as well as the results of a study designed to validate
the system.

Following the development of our prototype, we designed
and implemented a set of interaction techniques that are
enabled by GhostID. Some of these techniques illustrate the
benefits of GhostID in a single-user context, while others
make use of the ghosting information to support multi-user
systems with touch input discrimination.

The primary contributions of this paper are: (1) a framework
that defines the space of touch input differentiation; (2) the
GhostID concept and a prototype that differentiates users and
hands on capacitive touch devices without additional
hardware; and (3) a set of interaction techniques that are
enabled by GhostID’s capabilities.
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A FRAMEWORK FOR TOUCH INPUT DIFFERENTIATION
In conducting a review of the literature on touch
differentiation, we found it helpful to classify existing
techniques using a three-dimensional space representing
precision, persistence, and mobility. In this section, we
explain these parameters and classify existing methods
within the space. We hope that this framework will aid future
researchers in describing their contributions. An overview of
the framework is illustrated in Figure 2, and each variable is
described in detail below.

Precision

In our framework, we define precision as one of four levels
of detail at which a technology is able to differentiate or
group touch inputs. The levels of precision are: tracking,
user, hand, and finger. Each level is cumulative, so a hand
level technique is also classified as being both user level and
tracking level.

Tracking level precision is the ability to track multi-touch
points in real time. The seminal work for tracking multi-
touch is by Han [12], who proposed the use of frustrated total
internal reflection (FTIR) as the basis of multi-touch sensing.
Recent work by Leigh et al. [20] uses frequency-division
multiplexing (FDM) to detect multi-touch with extremely
low latency.

User level precision is the ability to differentiate between
multiple users who are simultaneously using the same touch
system. An example is DiamondTouch [7], a tabletop system
where users are individually capacitively coupled to the
table, providing each with a uniquely identifiable capacitive
signature. Other examples include CapAuth [11], Collaid [5],
See Me See You [46], Capacitive Touch Communication
[40], and HandsDown [36].

Hand level precision is the ability to determine that multiple
touches are coming from the same hand. An example is Annett
et al.’s Medusa [2], a proximity aware multi-touch tabletop
that uses arrays of sensors to track users and hands. Medusa’s
hand and user tracking technique is fairly precise, but the IR
sensors sometimes yield false positives due to reflections from
surrounding materials in the room (e.g., pipes, ceiling, etc.).

TouchID [21] uses a wearable glove to track the fingers and
hands of users for tabletop interactions. Dhose et al. [8] track
users’ hands based on skin color and spatial regions around
touch points, although their technique suffers from occlusion
problems. GhostID has hand level precision since it can
differentiate touches coming from one or two hands from a
single user, or the hands of multiple users.

Finger level precision is the ability to differentiate exactly
how many fingers are touching a surface, and which hands
they belong to. Holz et al.’s Fiberio [16] uses an arrangement
of high resolution cameras, fiber optics, and projector-based
methods for sensing and identifying multiple users on
tabletops. It recognizes an individual user’s fingerprints with
sophisticated image-processing algorithms. Extended
Multitouch [28] uses hand poses to differentiate fingers from
different users with a combination of a depth camera and
surface touch sensor.
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Ewerling et al. [9] use hand and arm images on an optical
multi-touch device along with touch information to detect
fingers and hands of multiple users. Most biometric fingerprint
sensors (like those used to unlock smartphones) have finger
level precision, but they are not used as general purpose input
devices since they are constrained to small patches of
specialized capacitive sensing, such as home buttons.

Persistence

We define persistence as the ability of a technology to
retain a differentiated touch input. As shown in Figure 2,
our framework describes persistence at five levels: input
frame, touch point, touch grouping, session, and lifetime.
As with the precision levels, persistence levels are also
cumulative.

Input frame persistence is the minimum persistence required
to sense touch. It is the ability to register a touch during a
single sensor sampling frame without any continuity or
relationship between successive frames. All of today’s touch
technologies have at least input frame persistence.

Touch point persistence is the ability to understand the
continuity of a moving touch point between frames as long
as the finger remains in contact with the sensor. However,
there is no relationship between multiple touch points.
Examples include Westerman’s [42] methods of tracking
multiple fingers and palms on multi-touch surfaces, and
McAvinney’s Sensor Frame [22] that recognizes gestures in
three dimensions. Other examples of touch point persistence
include Leigh et al. [20] and Han [12].
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Touch grouping persistence is the ability to detect that
multiple simultaneous touches are caused by the same user.
However, this persistence only lasts as long as the user
continues to touch the sensor. As one example, Zhang et
al. [47] grouped touches as coming from the left or right
hands for a single user on a Laser Light Plane (LLP) table.
GhostID has touch grouping persistence.

Session persistence allows touch grouping to continue
throughout a single usage session even if the user briefly
stops touching the sensor. However, if the user stops
interacting with the system, leaves, and later returns, the
technology cannot identify that the same user has returned.
DiamondTouch [7] and Medusa [2] are good examples of
session persistence. DiamondTouch is persistent as long as
the users remain seated in their capacitively coupled chairs.
Session based differentiation has been extensively studied in
the interaction techniques space due in large part to the
popularity of the DiamondTouch table as a research
tool [26, 37]. Another example is Harrison et al.’s research
on Capacitive Fingerprinting [13] that uses Swept Frequency
Capacitive Sensing (SFCS), introduced by Santo et al.’s
Touché [34]. It detects different users by sensing the
electrical properties of the human body and identifying
impedance profiles based on variations in bone density,
muscle mass, and footwear across individuals. Using a
prototype built around the Touché sensor board and
integrated with a small touch screen, Harrison et al. also
performed a user study involving three demo applications to
show the potential of user-aware interaction. More examples
of session persistent touch input discrimination include
See Me See You [46] and Clayphan et al. [5].

CECLTIMTI [4] EITTT YouTouch [39]
TR ring [31] [TEm] CapAuth [11]
Lifetime [ITTOCarpus [29]  CETTTT HandsDown [36] F-HFiberio [16]
Biometric Rich User ID from A
Gestures [33] Typing [24] Mobility
(0]
o CELTTICollaid [5] CETTMedusa [2] watch
[0) [ITTTIDiamondTouch [7] Extended phone
—
21 Session CITTTISee Me See You[46] FAETouchiD (211 FE Dy ivouch (28] tablet
2 CERTICapacitive Touch Communication [40] Hand tabletop
d‘f =W | Capacitive Fingerprinting [13] Tracking [8] room
"= GhostID
Touch Finger & Hand
Grouping Left/Right Hand Detection [9]
Distinction [47]
TEEmFTIR [12]
Touch |rremmrvT [20]
Point |rr=mmwesterman [42]
" I-mm SensorFrame [22]
Input
Frame
Tracking User Hand Finger

Precision ———p

Figure 2. A framework to categorize differentiation techniques. It is parameterized by precision, persistence, and mobility.

17



Innovative Sensing

Lifetime persistence can indefinitely and uniquely identify a
user across all sessions, and can associate all of their touches
with them. Lifetime persistence is often called user
identification. In most cases users must perform an initial
(implicit or explicit) registration operation when they first
interact with the system. Guo et al.’s CapAuth [11] senses
changes in the electric fields of the capacitive screen caused
by a finger, and can identify users within a smaller group (up
to 10 users) at 98.2% accuracy. Although they conclude that
their technique is not well suited for high-security
applications due to the non-scalability of the technique, the
accuracy obtained gives sufficient evidence of the
capabilities of capacitance based user-identification.

YouTouch [39] is a recent technique for identifying users on
wall-sized displays using a depth camera. There are several
other examples of user identification that use external
wearable hardware [31], gesture style [33], touch typing
style [24], skin texture [29], or hand geometry [4].

Mobility

We define mobility as the scalability and portability of a
touch input differentiation technology. These factors fall on
a continuous spectrum, but can be roughly divided into five
categories in order of decreasing mobility: smart watches,
phones, tablet, tabletops, and room.

The majority of touch input differentiation techniques are
low on the mobility scale due to the external support and/or
augmentation that they require. For example, Medusa [2]
only works indoors since the proximity sensors do not
perform well in the presence of sunlight. Likewise,
Fiberio [16] is highly precise and persistent, but its
integration into smaller form factors is not practical due to
the bulky high precision camera that is required. Because it
uses a standard capacitive sensor, GhostID is highly scalable
and can be used across the entire mobility spectrum, ranging
from 1” smart watches to room-sized interactive wall
displays.

Other user differentiation technologies

There are also techniques based on external hardware that are
capable of differentiating users. These either use wearable
hardware or employ user differentiation that does not use
finger or palm touches, and therefore they do not fit into our
framework [1, 15,17, 18, 19, 23, 30, 34, 35, 45].

Holz and Knaust’s Biometric Touch Sensing [18] seamlessly
augments each touch with continuous identification. They
rely heavily on a wrist-worn prototype sensor that captures
user-unique features and transmits them through the body to
a touch screen. Touché [34] is another capacitive touch-
sensing technique that uses a small wearable hardware sensor
to sense touch. However, the user identification is fragile due
to changes in the biometric response to capacitive signals,
and returning users are often not identified correctly.
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Overall, despite the development of many such approaches,
a self-contained (i.e., completely integrated into the
capacitive sensor) and accurate multi-user identification
system has not been developed.

In summary, GhostID is hand level precise, has fouch
grouping persistence, and offers a high range of mobility
covering smart watches to wall-sized displays. It is capable
of differentiating user touches on a large spectrum of
capacitive sensors, and is fully integrated into the touch
sensor itself.

GHOSTID:  USING
DIFFERENTIATE USERS
GhostID is based on FMT technology [20], and uses
frequency-division multiplexing to sense capacitive touch.
As noted in the introduction, the touch sensor is comprised
of an array of conductive rows and columns. A signal
transmitter is attached to each row, and a receiver is attached
to each column. The top of the sensor was covered by a
0.8 mm thick sheet of white vellum (used as a top-projection
surface), and a glass substrate provided structural support. A
photograph of the system is shown in Figure 5a. The
dimensions of this stack are 22 cm by 16 cm by 0.1 cm thick,
yielding a form factor similar to a 10” tablet. The sensor
contains 40 transmitter rows, and 30 receiver columns. The
entire system is powered by a 12V grounded wall adapter.
Although we chose to build the prototype using a tablet form
factor, the technology can be extended to much larger
capacitive touch displays.

GHOSTING SIGNALS TO

FMT transmits a unique, orthogonal sinusoidal signal (3.3 V,
80 — 120 kHz) into each row of the sensor. The rows are
capacitively coupled with the receiver columns at every
intersection point, and each column receives a baseline level
of signal when there are no touches on the sensor. A touch
changes the coupling at one or more intersection points,
which can be detected by the change in signal intensity.
Because the frequencies are orthogonal, multiple frequencies
received on a column can be decomposed into their
components with a Fourier transform, thereby allowing for a
complete snapshot of every row/column intersection during
every sampling frame. We refer to this signal snapshot as a
heatmap. Our prototype is capable of sensing at about 350
Hz. (In comparison, a traditional time-division multiplexing
(TDM) touch controller scans the sensor one row at a time,
and requires many sampling frames to read the entire sensor;
this yields a slower sampling rate. While a ghost-based
classification is possible on a TDM controller, the “one-shot”
sampling provided by FMT provides a more robust signal.)

A heatmap is computed by the touchscreen controller, and
this data is transmitted to a host PC via UDP over Ethernet.
Software on the host PC receives these packets, visualizes
the heatmap, and performs processing to locate touches and
perform the hand and user discrimination.
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GhostID gets its name from a signal artifact that occurs when
a single user touches the sensor in multiple places. Figure Sc
illustrates a heatmap with this artifact. Recall that touching
the sensor changes the coupling between a row and a column.
With our sensor, we see a decrease in signal intensity since
some of the signal is dissipated by the user’s body rather than
being fed into the receiver. If a single user touches the sensor
in multiple places, a signal travels from the first touched row,
through the user’s body, and is then re-injected into the
second touched column. We therefore detect a small increase
in intensity of the first row’s signal in the second column’s
receiver, and vice versa. This crosstalk does not occur if
multiple touches are made by separate people since there is
no path for the signal to travel from one person to another.

In Figure 3 (left), we see a single user touching the sensor in
two locations. These fingers strongly couple row 1 to
column G and row 3 to column D, resulting in two strong
touch points at 1-G and 3-D. In addition to these strong
pathways, the signal from row 1 passes into the user’s right
hand, through their body, and into their left hand, which is
touching column D. Similarly, some signal from row 3
passes in the opposite direction through to column G. 1-D
and 3-G therefore report weaker “ghost” touches that would
traditionally be filtered out and discarded as they do not
represent actual touch locations.

The strength of these ghost signals depends on the distance
the signal must travel between the two touch points. Signals
attenuate as they travel through the body, so shorter distances
will result in stronger ghosting. If the signal cannot travel
between the two points, as is the case in Figure 3 (right) when
two different users touch the sensor, there is no ghosting.

Figure 4 shows how this attenuation is used to determine if
two touches come from the same hand, from two hands of
the same user, or from multiple users. In Path A, the finger
directly couples a row to a column with very little
attenuation. Path B shows the short distance between two
fingers on the same hand. Path C spans from one arm,

Different Users

Same User

©® N AW N =
©® N OO hWwN =

. Actual Touch

‘ Ghost Signal

Figure 3. Two touches from the same user produce ghost
signals (blue) in addition to real touch signals (red). Two
touches from different users do not produce ghosts.
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Figure 4. Differing lengths of signal paths (A, B, C, and D)
allow user and hand differentiation.

through the torso to the other arm. Finally, Path D is
effectively infinite as there is no electrical connection
between start and end points that reside on different users.
Through this understanding of attenuation and ghosting, our
technique can use the strength of the ghost signals to classify
it as coming from one of these paths.

Because our current prototype broadcasts signals on rows
and receives signals on columns, it is not able to identify
ghosts when two actual touches occur on the same row or
column. The strong signals from the actual touch locations
will be in the same place as the ghosts, and will therefore
mask the weaker ghost crosstalk. This limitation could be
overcome with changes to the sensor, as discussed in the
Future Work section of the paper.

Signal Processing

This section describes the signal processing pipeline (shown
in Figure 6) that enables touch differentiation. The incoming
signals are passed through a Python-based software pipeline
that consists of: pre-processing, touch detection, ghost
detection, feature extraction, per-frame classification, multi-
frame analysis, and output of Ghost[D attributes (i.e., touch
origin). The GhostID attributes are metadata that are
associated with each touch point, and are separate from the
touch tracking itself; this allows normal touch processing to
occur independently of the GhostID analysis.

Projector
B ‘
; e |
FPGAI Bl
-4 . EE-=-E=4
- Sensor =255 EE

Figure 5. (a) GhostID prototype consisting of a 10-inch sensor,
FPGA controller, and projector; (b) the sensor surface, with
projected feedback; (c) a heatmap visualizing two touch points
(red and yellow) from the same hand, and the two resulting
ghost signals (dark blue).
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Figure 6. Signal processing pipeline.

Pre-processing. First, each heatmap from the touch
controller is checked for validity and completeness. Next, we
level the data. Due to several factors, including attenuation
of signals across the rows of the sensor, minute variations in
adhesive and material thickness and properties, and
variations in connections between signal generators and
rows, the baseline signal is not uniform across the entire area
of the sensor. As such, each pixel (i.e., a row/column
intersection in the heatmap) needs to be calibrated to produce
auniform leveling of the sensor data. We record a set of 1000
frames without any touches, and compute an average for
each pixel. This average is then subtracted from the incoming
raw sensor data to yield a leveled heatmap.

Touch detection. A touch is detected by thresholding the
heatmap by signal strength, creating connected components
with similar signal intensities, and then finding the location of
the local maximum signal strength within each connected
component. The threshold level is chosen to remove all ghost
signals and leave us with a set of real touches, and is
essentially equivalent to the touch detection and ghost removal
normally performed by the touch controller. Two outputs are
generated from this processing step: touch data is passed out
of the pipeline up to the application level, and the heatmap is
passed to the remainder of the pipeline to process the ghosts.

Ghost detection and feature extraction. If there are ghost
signals, they must by definition appear somewhere along the
rows and columns where we have detected real touches (see
Figure 3). To search for the ghosts, we generate a list of
candidate locations (i.e., a bounding box on the heatmap) by
taking each possible pair of real touches and determining the
two locations where their ghosts would occur. Next, we
examine each ghost candidate by computing a histogram
profile of its column, excluding the real touch region and the
candidate ghost region. This generates a background noise
profile for the column, which follows a normal distribution.
We then find the lowest signal strengths within the candidate
ghost region, and compute z-scores to compare them to the
background noise. All of these features (the signal strength
for each touch, and the signal strength and z-score for each
ghost candidate) are then fed into classifiers in the next step.
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Per-frame classification. We construct feature vectors, and
feed them into a pair of binary classifiers (one vs. two users,
and one vs. two hands of the same user). We evaluated a
variety of classifiers, including k-Nearest Neighbors (kNN),
Support Vector Machines (SVM), Decision Trees (iD3), and
Logistic Regression. We found that a kNN classifier [6] had
the best performance, and made use of a pair of binary
classifiers (rather than a multiclass classifier to determine
both user and hand classifications) in order to be able to
independently tune the features used by each classifier. Our
classifiers were trained on a dataset collected with known
ground truths; details are provided in the Evaluation section
of the paper.

To correctly classify more than two touches, we first classify
all possible pairs of two touches using the binary classifiers.
Because touch origin is transitive (i.e., if touches A and B
are from the same user, and touches B and C are from the
same user, we know all three are from the same user), we
can assign origins to all touches. This technique scales well
with increasing numbers of touch points, and we have tested
it for up to four touch points (one touch per user from four
users).

Multi-frame analysis. We can further improve the accuracy
of the classifiers by performing a classification across
multiple frames. Our sensor is capable of producing data at a
frame rate of about 350 Hz, and the standard for most
displays is 60 Hz. As such, we can group up to five frames
together without compromising the standard frame rate for
most touch devices. We use a rolling window to group
multiple consecutive frames, and a majority voting system
tracks the label allotments within each group; this prevents
brief classification errors from impacting the final result.

Output of GhostID attributes. We output a set of attributes
for each touch point, which allows the application layer to
make use of our classifications. Once we output this
information, GhostID processing can be discontinued until
there is a change in the set of touch points (e.g., a new touch
point appears), and thereby provide a touch grouping level of
persistence.
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EVALUATION

In order to validate the performance of our prototype and
software pipeline, we conducted a study to measure the
accuracy of the classifications against known ground truths
(i.e., sensor signals captured with known touch origins). We
collected a smaller set of initial training data, followed by a
larger dataset used for our accuracy evaluation.

Training Data Collection

Our training datasets consists of two parts. The first dataset
contained single user data: two touches from two fingers on
the same hand vs. two touches from fingers on different
hands. The second dataset consisted of data for two users,
and contained single touches from pairs of users. We
collected both sets of data using 6 participants. All 15
possible combinations of participants were tested in a round-
robin design. The data from these experiments was used to
build the models used by both classifiers.

Accuracy Study

This study evaluated the accuracy of GhostID differentiating
touches from one, two, and three simultaneous users, as well
as distinguishing one vs. two hands from a single user. Our
study consisted of 21 participants (16 males and 5 females)
with a mean age of 25 (sd=4) recruited from the local
community. Participants were compensated $20. All
participants had previous experience with capacitive touch
devices.

Apparatus

We used the 10-inch GhostID prototype shown in Figure Sa,
which is based on an opaque touch sensor with an overhead
projector. A desktop workstation with a 3.6 GHz Intel i7
CPU and 16 GB of RAM running Microsoft Windows 10
was used to log the data using a custom Java application.

Trials

The participants were randomly divided into seven groups
of three. Each experimental session consisted of a single
group of three, and each group performed one session.
Participants were seated around the GhostID prototype, and
each was assigned a color to serve as an identifier. A trial
consisted of a standard multi-touch gesture. Each trial lasted
for ten seconds, during which time all heatmap data was
logged. A color-coded prompt indicated which
participant(s) should make what type of gesture. Gestures
were illustrated using arrows, and participants moved their
fingers along the specified paths, thereby providing
consistent gesture sizes.

The selected gestures were traditional multi-touch gestures:
a straight swipe gesture with the index finger; a curved swipe
gesture with the index finger; a pinch gesture with the index
finger and thumb; two finger (index and middle) scroll; and
three finger (index, middle, and ring) tap-and-hold. All
gestures were performed with the right hand, unless
indicated otherwise.
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Design

A group session consisted of three parts. The first part
involved participants interacting with the sensor
individually. The second part involved all three possible
pairs of participants interacting with the sensor. The third
part involved all three participants interacting with the sensor
simultaneously.

Part 1: Single user hand differentiation

Two types of single user gestures were performed: pinch, and
two finger scroll. A total of 12 trials were run, which were
performed across the entire sensor area.

Pinch. The participants were asked to perform a pinch (back
and forth in both directions) using their right index finger and
thumb. Participants were then asked to do the same pinch
gesture using their right index finger and left thumb. A right
index finger and left thumb pinch is not a common gesture;
most users would be more likely to use their left index finger
for a two-handed pinch. However, we elected to use the left
thumb to avoid introducing an additional variable into our
comparison, since an index finger would have had a very
different touch footprint than the thumb used for the one-
handed pinch.

Swipe. The participants were asked to do a two finger swipe
back and forth using their right index and middle fingers, and
then using their index fingers from their left and right hands.

Part 2: Two-user differentiation

Participants were asked to sit facing each other and perform
simultaneous gestures. The positions of the participants were
switched half-way through the session to remove any
positional bias, and every participant performed gestures
across the entire sensor surface. The gestures performed by
each participant were: one finger swipe, one finger curved
swipe, two finger pinch, and two finger swipe. Because our
current prototype cannot perform touch discrimination on
touches that are aligned in the same column of the sensor (see
Limitations section for a discussion of this issue), we
positioned the gestures to avoid this configuration.

Part 3: Three-user differentiation

All three participants were asked to sit around three sides of
the sensor and perform simultaneous gestures. Limited
physical space on the sensor precluded gestures with a large
surface area, so participants performed a one finger swipe.
Positions were rotated so that each participant performed the
gesture in all four corners of the sensor.

Summary
In total, our dataset contained:

4 gestures % 3 individuals (Part 1)
+ 4 gestures x 2 locations % 3 pairs (Part 2)
+ 1 gestures x 4 locations % I triplet (Part 3)

= 40 trials/session

x 7 sessions (21 participants total)
= 280 trials

x ~2,174 frames/trial
= 608,720 frames
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Results
Because each trial has a known ground truth, we can
benchmark our classifiers.

When examining a single frame, our hand classifier (one
hand vs. two hands) was able to correctly identify the origin
of two touch points with a precision of 0.77 (recall = 0.76).

Table 1 shows the performance of our multi-user classifier for
two and three touch points. Each column shows the results for
one experimental group (each with 3 participants) and each
row shows the results for a category of touch points.
Averaging across all groups, we were able to differentiate
touches from two users 94.9% of the time (sd=10.7%) and
three users 98.5% of the time (sd=2.4%); overall precision
and recall are shown in the rightmost columns of Table 1. The
performance across the groups was observed to be consistent,
except for groups 2 and 4. This change in performance is due
to perspiration in the hands of one participant in each of those
groups (P4 and P10). This moisture was absorbed by the
vellum sheet used in the current GhostID prototype, and
generated spurious signals from the sensor that swamped the
relatively weak ghost signals.

If we exclude trials from P4 and P10, we achieve an overall
performance of 99.45% (sd=0.6%) for differentiating two
touches from two users, and 99.41% (sd=0.5%) performance
for differentiating three touches from three different users.
Despite the impact of the perspiration on the two
participants, we do not consider it a problem moving
forward, since the vellum is not a required component of the
system. Future iterations will use a glass top layer, and
therefore will not be subject to the same effects. Moreover,
perspiration is not unique to our techniques. As an example,
FTIR [12] is also susceptible to erroneous finger
classification due to finger residues if not properly
constructed (e.g., a malleable glue overlay of the FTIR
surface to evenly distribute the finger pressure and keep
finger residues away from the sensing surface).

Our 350 Hz sensor could use a window size (i.e., the number
of frames used by the voting system) as large as 5 while
maintaining 60 Hz output. In order to select our window size,
we performed an analysis using window sizes between
1 and 100. As expected, we see an improvement in

Gl | G2 | G3 | G4 | G5 | G6 | G7 | Precision| Recall
Luser 16961099 10.92(082]095|0.88 [0.04] 0.92 0.94
2 fingers
2users | 09107110.990.960.99 [ 1.00[1.00] 095 0.92
2 fingers
2users | e610.88]0.88|0.64|0.84[0.89 [0.97] 085 0.98
3 fingers
Susers | 0011.00(0.99]0.93]1.00/0.99 | 1.00] 099 0.86
3 fingers

Table 1. Precision rates for user differentiation for each of our
seven session groups. The overall precision and recall across all
groups are shown in the rightmost columns.
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performance when using multiple frames, but we do not see
significant improvements using more than 4 frames. All of
the reported measurers in this paper are therefore based on a
4 frame window. Finally, although we tested our system with
three users simultaneously interacting with the sensor, the
GhostID technology is scalable to many users and is only
limited by the device form factor.

Techniques to improve differentiation

The accuracy can be further increased with simple heuristics.
For example, there are location constraints associated with
human anatomy; if touch points are at a sufficient distance
from each other, they cannot belong to the same hand. These
techniques were not used in the classifier, but future work
will leverage this information to improve recognition.

In addition, the accuracy of our single user classifier could
be improved with individualized per-user classifier training,
since individuals tend to touch with different amounts of
pressure and surface area. While this tailoring could not be
used in a generic “walk up” situation, it could be useful for
personal devices.

ENABLED TECHNIQUES AND SCENARIOS

In this section we discuss some of the interaction techniques
we have prototyped using GhostID. GhostID can extend and
enhance some existing techniques that already exist on a
variety of sizes of traditional capacitive touchscreens, and
can also enable new interaction techniques for mobile
devices that are not possible on traditional touch devices,
including techniques previously limited to specialized multi-
user systems such as the DiamondTouch.

Handling Another Hand
These techniques leverage GhostID’s ability to differentiate
between single-handed and bimanual interaction by one user.

Single handed mode. The ability to differentiate hands can be
used to ignore undesired touches from the non-dominant
hand that is holding the device. Accidental activation with
the non-dominant hand is very common on most touch
devices [43], and can interfere with the user experience. For
instance, it can be difficult to hold a larger touchscreen
device (e.g., a tablet) by its edges without inadvertently
activating Ul elements near the sides of the screen. With
GhostID the user can hold the device without having to
adjust their grip to avoid touching the screen. This is
particularly useful for edge-to-edge touch screens where
fringe contacts cannot be avoided.

Bimanual interactions. In use cases where a single user
explicitly intends to interact using both hands, GhostID can
provide each hand with a different functionality. For
instance, the index finger on the dominant hand could be
used as a drawing pen while fingers on the non-dominant
hand could be used as an eraser or as a mechanism to open a
contextual menu [2, 21].
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Handling Another User’s Hands
GhostID also enables a rich set of multi-user scenarios as
depicted in Figure 7.

Ignoring secondary users. People frequently share content
on a touchscreen by showing their device to someone else.
However, it is quite easy for the second person to
unintentionally generate touch input in the process (e.g., by
pointing at something) and negatively impact the application
(e.g., dismissing a full-screen image, deleting an email
message, etc.) [2, 27]. With GhostID s ability to distinguish
between users, it is possible to ignore the errant touches from
the second user. The primary user must still touch the surface
with their non-dominant hand to provide continuous session
level persistence for the duration of the touch, but any
additional touch input from other users can now be muted.
This allows the secondary user to touch the screen freely
without disturbing the contents of the UL

Handoff. GhostID enables a specific interaction technique
when handing off a mobile device to another person [14]. If
a user passes a mobile device to someone else, as long as
both users are in contact with the device for some moment in
time (a natural result of handing something to someone else),
GhostID will be able to tell that a new person is gripping the
device. This information can be used to enable collaborative
features or provide privacy protection by switching to a guest
mode with restricted access. In order to return to unrestricted
access, the primary user would need to re-identify
themselves, which is not directly supported by GhostID.

Collaboration. GhostID provides explicit support for
collaboration scenarios. In large displays, where multiple
people can interact at the same time, the notion that two
hands belong to the same wuser can help maintain
collaboration by specifically supporting actions that only
affect one user. As one example, a drawing application can
support multiple users painting collaboratively, but any
brush or color changes are only applied to the ink stroke that
belongs to the user who changed the settings [13].

In addition, GhostID enables a wide range of multi-user
tabletop techniques at the fouch-user level of persistence.
Many techniques have previously been explored by
researchers using the DiamondTouch. Examples include
Morris et al. [26] and Shen et al. [37]. We refer the reader to
Benko et al. [3], Morris et al. [25], and Ryall et al. [32] for
an extensive list of interaction techniques enabled by
DiamondTouch and other multi-touch tabletops.

Handling Gestures
Finally, GhostID enables extensions and disambiguations of
traditional multi-touch gestures.

Disambiguating gestures. We can support a richer set of
gestures by leveraging GhostID s ability to determine if two
points originate from the same hand, different hands of the
same user, or different users. From the point of view of a
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person interacting with a device, the distinction between
these three sets of inputs is obvious. However, from the point
of view of a traditional touch sensor, those inputs can often
appear to be identical. GhostID allows the sensor to
disambiguate them, and therefore enables richer gestures.
For example, two touch points from a single hand can be
mapped to the ‘resize’ command (i.e., a familiar ‘pinch’
gesture), while two touch points from a user’s left and right
hands can be mapped to a ‘duplicate command’ (Figures 8a
and 8b). Furthering this example, two touch points from two
different users could tear that object in half (Figure 8c) [21,
26]. Traditional touch technologies would have difficulty
distinguishing these scenarios.

Gesture granularity. There are also scenarios in which
different gestures can be mapped to related actions [21]. For
example, consider navigating a map on a large touch surface.
With GhostID, different granularities can be encoded in the
different variations of the same gesture: zooming by
pinching with two fingers from the same hand could provide
a fine-grain zoom, while pinching using two hands could
provide a coarse zoom.

‘aﬁ g
Figure 7. (a) When the primary user interacts using their
dominant hand (purple circle), accidental touches from their
non-dominant thumb (green circle) or from a second user

(orange square) can be ignored. (b) Handing the tablet to
someone else triggers a handoff mode with restricted access.

tear

copy

Figure 8. GhostID enables disambiguation of otherwise similar
touch point paths. (a) A pinch with one hand zooms an image,
while (b) two fingers on different hands of one user copies the
image, and (c) touches from two different users tears the image.
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LIMITATIONS

The current setup is not without limitations. The current
implementation only supports a touch grouping level of
persistence. As we have described in the previous section,
this persistence level does enable novel interactions;
however, it is not enough for security-based interactions such
user identification. From our experience, the ghosting
information is not unique to an individual user and, without
external hardware that identifies the user, ghosting
information alone cannot be used as an identification
method.

In order to provide a ghost-free signal for touches
originating from two different people, they must be
capacitively isolated from each other. While this is the case
in most situations, a couple of people can be capacitively
coupled by simply holding hands. Once they are in direct
contact with each other, signals will travel through both
bodies. While in principle we could examine the additional
signal attenuation due to the extended signal path and
attempt to classify this situation, we have not yet done so.
This limitation is most likely to arise in social use cases
(e.g., a couple sitting together on a couch), and might
actually open an interesting set of collaborative gaming
applications [41]. Although we have yet to formally
quantify capacitive coupling between individuals, our
experience is that indirect contact (e.g., two people leaning
on the same wooden table) does not have any impact on
GhostID. Similarly, grounding a user will create a lower
amount of ghosting since some of the signals will be
dissipated before they can be re-injected. While we have
found that the reduction in signal associated with typical
activities (e.g., standing with bare feet on carpet) does not
have any impact on our classification, a user who is
thoroughly grounded (e.g., touching a grounded metal table
frame) will not produce sufficient ghosts.

The current prototype cannot run the GhostID classification
on touches if more than one of those touches occur in the
same row or column because any potential ghosting
information is swamped by the signal from the actual touch.
We can still register a traditional touch event; we are simply
unable to detect if it has a ghost. In practice, this is not a
significant limitation, since the lack of ghosting is transient.
The ghosting only disappears during individual frames when
the fingers are precisely aligned; as soon as they diverge, the
ghosts reappear. A brief disappearance of ghosting during a
gesture can therefore be mitigated by using a larger rolling
window or other heuristics (e.g., positional information). In
addition, this issue will be eliminated by forthcoming
hardware improvements described below.

Finally, our current prototype sensor suffers reduced
accuracy if a user has particularly sweaty hands due to
moisture effects on the topmost layer of the sensor. This
limitation is unique to the current prototype, and will not be
present on future iterations using impermeable top layers.
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FUTURE WORK

As future work, we identify two paths of hardware
development. First, our sensor needs to be integrated with
improved top layer materials, such as glass, or integrated
solutions such as ITO. This will strongly reduce the effects
of perspiration, and is a necessary step for technology
adoption. An ITO-based version of our prototype has been
stood up in our lab and, while not ready as of the time of this
writing, is showing great promise. Second, our current sensor
broadcasts signals on rows and receives signals on columns.
This arrangement generally works well, but as discussed
above, it cannot detect ghosting information if multiple
touches are aligned in the same row or column. A more
sophisticated design would eliminate this issue by making
several changes. First, each row and column would be
connected to a high-speed switch, which would allow the
row or column to flip between transmitter or receiver. We
then configure the switches so that transmitters and receivers
are alternated on both the rows and columns. Finally, we use
the switches to flip the transmitter/receiver status of every
row and column several times during each frame. This sensor
configuration will produce richer ghosting information
(helpful information that would allow us to simplify the
complexity of the classification algorithms), but also would
be able to work around many touch conformations in which
touches mask ghosts.

From a software perspective, we intend to explore additional
classifiers to further improve our accuracy rates. We also
intend to explore additional heuristics to improve both our
classification accuracy (e.g., distance between touches), as
well as GhostID’s level of persistence (e.g., time-based
heuristics for brief touch removals).

CONCLUSION

We present GhostID, a capacitive sensing technique that can
distinguish touches from multiple users and even touches
from different hands of the same user. Our approach
leverages the existing signals from an FDM touch controller,
and does not require additional hardware or changes to the
sensor itself, making it a potential drop-in replacement for
sensing techniques available in the current generation of
commercial devices. GhostID is presented in the context of
a new framework that categorized touch input
differentiation. In addition, the value of GhostID is
illustrated through a description of interaction techniques
that are enabled by touch origin differentiation.

Finally, we have just scratched the surface of potential
applications for user and hand discrimination. We envision
single-user interfaces using hand-discrimination that greatly
expand the communication between user and machine, as
well as multi-user interfaces that enable simultaneous multi-
user interactions that “just work” as expected.
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