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ABSTRACT)
Current touch devices are adept at tracking finger touches, 
but cannot distinguish if multiple touches are caused by 
different fingers on a single hand, by fingers from both hands 
of a single user, or by different users. This limitation 
significantly reduces the possibilities for interaction 
techniques in touch interfaces. We present GhostID, a 
capacitive sensor that can differentiate the origins of multiple 
simultaneous touches. Our approach analyzes the signal 
ghosting, already present as an artifact in a frequency-
division touch controller, to differentiate touches from the 
same hand or different hands of a single user (77% reliability 
at 60 fps) or from two different users (95% reliability at 
60 fps). In addition to GhostID, we also develop a framework 
of user-differentiation capabilities for touch input devices, 
and illustrate a set of interaction techniques enabled by 
GhostID.)

Author)Keywords)
User Differentiation; Capacitive Touch Sensor; Signal 
Processing; Mobility 
ACM)Classification)Keywords)
H.5.m. Information interfaces and presentation (e.g., HCI): 
Interactions 

INTRODUCTION)
The commoditization of multi-touch input has enabled 
device form factors ranging in size from 1! smart watches to 
25" public displays. While a number of technologies have 
been used to detect touch input (e.g., resistive, optical, 
acoustic, etc.), capacitive touch sensing has come to 
dominate the commercial sphere.  
As devices increase in scale, the likelihood and utility of 
multiple simultaneous users also increases. For example, the 
research community has repeatedly demonstrated the 
advantages of single-display groupware in tabletop and large 
display contexts [3, 10, 26, 27, 38]. Despite the benefits, there 
remains an important obstacle to commercial deployment in 
many contexts—the inability, without external hardware, to 
consistently differentiate between touches belonging to 
different users [19, 23, 30, 34, 40]. A lack of user 
differentiation can break well-understood user interface 
metaphors, such as finger painting [44]: when a single user 
selects a paint color, that color is then applied to all current 
users. In addition, further differentiation at the hand level (i.e., 
do a pair of touches come from two fingers on a single hand, 
or from one finger on each of a user’s hands?) has also been 
shown to be beneficial [9, 16, 28]. To the authors’ knowledge, 
no commercial devices are able to consistently differentiate 
multiple simultaneous touches at any level of precision. 
To address this limitation, researchers have attempted to 
design systems that can differentiate touches from multiple 
users. Some systems augment touch sensing with other 
sensors, such as cameras [16, 36], fiber optics [12], or 
proximity sensors [2]. Others augment touch sensors with 
user-specific signal emitters [7, 18, 19, 34]. While each of 
these techniques can identify touch origins, the need for 
additional sensors or external augmentation limits their use 
cases. An ideal solution for user differentiation would be to 
enable the capacitive sensor itself to differentiate touches, 
without the reliance on external hardware.  
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Figure 1. (a) GhostID prototype with a 10-inch capacitive sensor; (b) two touches from the same hand produce touch points (red 
and yellow) and ghost signals (dark blue); (c) two touches from two different users produce touch points but no ghosting. 
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In this paper, we propose a novel method to differentiate the 
touches from different hands of a single user, as well as 
touches from multiple users. The technique is based on the 
frequency-division multiplexing (FDM) capacitive sensing 
demonstrated in Leigh et al.’s Fast Multi-Touch (FMT) 
device [20]. While the primary purpose of FMT was to 
enable higher frame rates to achieve low-latency sensing, we 
have found that its unique approach is also well suited to 
touch differentiation.  
A bare capacitive sensor is composed of rows and columns 
of conductive material. To sense multi-touch input, an FMT 
system injects orthogonal signals into each row. When a user 
touches the sensor, their finger will capacitively couple one 
(or more) rows to one (or more) columns. If a single user 
touches the sensor in multiple locations, each touch point 
produces its own coupling of rows and columns. However, 
because humans are conductive, some of the signals will 
travel through the hand and into the body of the user. If the 
user places a second finger on the sensor, these conducted 
signals will be received alongside the intended signals. The 
weaker, conducted signals produce faint “ghost” points on 
the sensor that do not correspond to actual touches.  
Leigh et al. view these ghosts as noise, because they do not 
correspond to actual touches, and therefore filter them out to 
produce a reliable sensor. However, rather than minimizing 
and/or simply discarding them, we explicitly use them to 
differentiate touch origin. If a ghost is present, we know the 
touch must come from the same user who is already touching 
the sensor at the position where the ghost signal originated. 
Moreover, we can use the strength of the ghost signals to 
detect whether two touches are from the same or different 
hands of the same user. 
The GhostID prototype, shown in Figure 1(a), consists of a 
touch controller implemented on a field-programmable gate 
array (FPGA) that drives an opaque copper-mesh touch 
sensor. The controller utilizes FMT principles, except 
ghosting is not filtered out as noise by the controller.  
Our post-processing algorithms can discriminate two touches 
as coming from the same or different users with 95% 
precision. Similarly, they can discriminate two touches as 
coming from one or two hands of a single user with 77% 
precision. In this paper, we describe our processing pipeline 
in detail, as well as the results of a study designed to validate 
the system. 
Following the development of our prototype, we designed 
and implemented a set of interaction techniques that are 
enabled by GhostID. Some of these techniques illustrate the 
benefits of GhostID in a single-user context, while others 
make use of the ghosting information to support multi-user 
systems with touch input discrimination. 
The primary contributions of this paper are: (1) a framework 
that defines the space of touch input differentiation; (2) the 
GhostID concept and a prototype that differentiates users and 
hands on capacitive touch devices without additional 
hardware; and (3) a set of interaction techniques that are 
enabled by GhostID’s capabilities. 

A)FRAMEWORK)FOR)TOUCH)INPUT)DIFFERENTIATION)
In conducting a review of the literature on touch 
differentiation, we found it helpful to classify existing 
techniques using a three-dimensional space representing 
precision, persistence, and mobility. In this section, we 
explain these parameters and classify existing methods 
within the space. We hope that this framework will aid future 
researchers in describing their contributions. An overview of 
the framework is illustrated in Figure 2, and each variable is 
described in detail below. 

Precision)
In our framework, we define precision as one of four levels 
of detail at which a technology is able to differentiate or 
group touch inputs. The levels of precision are: tracking, 
user, hand, and finger. Each level is cumulative, so a hand 
level technique is also classified as being both user level and 
tracking level. 
Tracking level precision is the ability to track multi-touch 
points in real time. The seminal work for tracking multi-
touch is by Han [12], who proposed the use of frustrated total 
internal reflection (FTIR) as the basis of multi-touch sensing. 
Recent work by Leigh et al. [20] uses frequency-division 
multiplexing (FDM) to detect multi-touch with extremely 
low latency. 
User level precision is the ability to differentiate between 
multiple users who are simultaneously using the same touch 
system. An example is DiamondTouch [7], a tabletop system 
where users are individually capacitively coupled to the 
table, providing each with a uniquely identifiable capacitive 
signature. Other examples include CapAuth [11], Collaid [5], 
See Me See You [46], Capacitive Touch Communication 
[40], and HandsDown [36]. 
Hand level precision is the ability to determine that multiple 
touches are coming from the same hand. An example is Annett 
et al.’s Medusa [2], a proximity aware multi-touch tabletop 
that uses arrays of sensors to track users and hands. Medusa’s 
hand and user tracking technique is fairly precise, but the IR 
sensors sometimes yield false positives due to reflections from 
surrounding materials in the room (e.g., pipes, ceiling, etc.).  
TouchID [21] uses a wearable glove to track the fingers and 
hands of users for tabletop interactions. Dhose et al. [8] track 
users’ hands based on skin color and spatial regions around 
touch points, although their technique suffers from occlusion 
problems. GhostID has hand level precision since it can 
differentiate touches coming from one or two hands from a 
single user, or the hands of multiple users. 
Finger level precision is the ability to differentiate exactly 
how many fingers are touching a surface, and which hands 
they belong to. Holz et al.’s Fiberio [16] uses an arrangement 
of high resolution cameras, fiber optics, and projector-based 
methods for sensing and identifying multiple users on 
tabletops. It recognizes an individual user’s fingerprints with 
sophisticated image-processing algorithms. Extended 
Multitouch [28] uses hand poses to differentiate fingers from 
different users with a combination of a depth camera and 
surface touch sensor.  
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Ewerling et al. [9] use hand and arm images on an optical 
multi-touch device along with touch information to detect 
fingers and hands of multiple users. Most biometric fingerprint 
sensors (like those used to unlock smartphones) have finger 
level precision, but they are not used as general purpose input 
devices since they are constrained to small patches of 
specialized capacitive sensing, such as home buttons. 

Persistence)

We define persistence as the ability of a technology to 
retain a differentiated touch input. As shown in Figure 2, 
our framework describes persistence at five levels: input 
frame, touch point, touch grouping, session, and lifetime. 
As with the precision levels, persistence levels are also 
cumulative. 

Input frame persistence!is the minimum persistence required 
to sense touch. It is the ability to register a touch during a 
single sensor sampling frame without any continuity or 
relationship between successive frames. All of today’s touch 
technologies have at least input frame persistence. !

Touch point persistence is the ability to understand the 
continuity of a moving touch point between frames as long 
as the finger remains in contact with the sensor. However, 
there is no relationship between multiple touch points. 
Examples include Westerman’s [42] methods of tracking 
multiple fingers and palms on multi-touch surfaces, and 
McAvinney’s Sensor Frame [22] that recognizes gestures in 
three dimensions. Other examples of touch point persistence 
include Leigh et al. [20] and Han [12].!!

Touch grouping persistence is the ability to detect that 
multiple simultaneous touches are caused by the same user. 
However, this persistence only lasts as long as the user 
continues to touch the sensor. As one example, Zhang et 
al. [47] grouped touches as coming from the left or right 
hands for a single user on a Laser Light Plane (LLP) table. 
GhostID has touch grouping persistence. 

Session persistence allows touch grouping to continue 
throughout a single usage session even if the user briefly 
stops touching the sensor. However, if the user stops 
interacting with the system, leaves, and later returns, the 
technology cannot identify that the same user has returned. 
DiamondTouch [7] and Medusa [2] are good examples of 
session persistence. DiamondTouch is persistent as long as 
the users remain seated in their capacitively coupled chairs. 
Session based differentiation has been extensively studied in 
the interaction techniques space due in large part to the 
popularity of the DiamondTouch table as a research 
tool [26, 37]. Another example is Harrison et al.’s research 
on Capacitive Fingerprinting [13] that uses Swept Frequency 
Capacitive Sensing (SFCS), introduced by Santo et al.’s 
Touché [34]. It detects different users by sensing the 
electrical properties of the human body and identifying 
impedance profiles based on variations in bone density, 
muscle mass, and footwear across individuals. Using a 
prototype built around the Touché sensor board and 
integrated with a small touch screen, Harrison et al. also 
performed a user study involving three demo applications to 
show the potential of user-aware interaction. More examples 
of session persistent touch input discrimination include 
See Me See You [46] and Clayphan et al. [5]. 

 

Figure 2. A framework to categorize differentiation techniques. It is parameterized by precision, persistence, and mobility. 

 

Innovative Sensing CHI 2017, May 6–11, 2017, Denver, CO, USA

17



 
 

Lifetime persistence can indefinitely and uniquely identify a 
user across all sessions, and can associate all of their touches 
with them. Lifetime persistence is often called user 
identification. In most cases users must perform an initial 
(implicit or explicit) registration operation when they first 
interact with the system. Guo et al.’s CapAuth [11] senses 
changes in the electric fields of the capacitive screen caused 
by a finger, and can identify users within a smaller group (up 
to 10 users) at 98.2% accuracy. Although they conclude that 
their technique is not well suited for high-security 
applications due to the non-scalability of the technique, the 
accuracy obtained gives sufficient evidence of the 
capabilities of capacitance based user-identification.  

YouTouch [39] is a recent technique for identifying users on 
wall-sized displays using a depth camera. There are several 
other examples of user identification that use external 
wearable hardware [31], gesture style [33], touch typing 
style [24], skin texture [29], or hand geometry [4].  

Mobility)

We define mobility as the scalability and portability of a 
touch input differentiation technology. These factors fall on 
a continuous spectrum, but can be roughly divided into five 
categories in order of decreasing mobility: smart watches, 
phones, tablet, tabletops, and room.  

The majority of touch input differentiation techniques are 
low on the mobility scale due to the external support and/or 
augmentation that they require. For example, Medusa [2] 
only works indoors since the proximity sensors do not 
perform well in the presence of sunlight. Likewise, 
Fiberio [16] is highly precise and persistent, but its 
integration into smaller form factors is not practical due to 
the bulky high precision camera that is required. Because it 
uses a standard capacitive sensor, GhostID is highly scalable 
and can be used across the entire mobility spectrum, ranging 
from 1! smart watches to room-sized interactive wall 
displays.  

Other)user)differentiation)technologies)

There are also techniques based on external hardware that are 
capable of differentiating users. These either use wearable 
hardware or employ user differentiation that does not use 
finger or palm touches, and therefore they do not fit into our 
framework [1, 15, 17, 18, 19, 23, 30, 34, 35, 45].  

Holz and Knaust’s Biometric Touch Sensing [18] seamlessly 
augments each touch with continuous identification. They 
rely heavily on a wrist-worn prototype sensor that captures 
user-unique features and transmits them through the body to 
a touch screen. Touché [34] is another capacitive touch-
sensing technique that uses a small wearable hardware sensor 
to sense touch. However, the user identification is fragile due 
to changes in the biometric response to capacitive signals, 
and returning users are often not identified correctly.  

Overall, despite the development of many such approaches, 
a self-contained (i.e., completely integrated into the 
capacitive sensor) and accurate multi-user identification 
system has not been developed.  

In summary, GhostID is hand level precise, has touch 
grouping persistence, and offers a high range of mobility 
covering smart watches to wall-sized displays. It is capable 
of differentiating user touches on a large spectrum of 
capacitive sensors, and is fully integrated into the touch 
sensor itself.  

GHOSTID:) USING) GHOSTING) SIGNALS) TO)
DIFFERENTIATE)USERS)

GhostID is based on FMT technology [20], and uses 
frequency-division multiplexing to sense capacitive touch. 
As noted in the introduction, the touch sensor is comprised 
of an array of conductive rows and columns. A signal 
transmitter is attached to each row, and a receiver is attached 
to each column. The top of the sensor was covered by a 
0.8 mm thick sheet of white vellum (used as a top-projection 
surface), and a glass substrate provided structural support. A 
photograph of the system is shown in Figure 5a. The 
dimensions of this stack are 22 cm by 16 cm by 0.1 cm thick, 
yielding a form factor similar to a 10! tablet. The sensor 
contains 40 transmitter rows, and 30 receiver columns. The 
entire system is powered by a 12V grounded wall adapter. 
Although we chose to build the prototype using a tablet form 
factor, the technology can be extended to much larger 
capacitive touch displays. 

FMT transmits a unique, orthogonal sinusoidal signal (3.3 V, 
80 – 120 kHz) into each row of the sensor. The rows are 
capacitively coupled with the receiver columns at every 
intersection point, and each column receives a baseline level 
of signal when there are no touches on the sensor. A touch 
changes the coupling at one or more intersection points, 
which can be detected by the change in signal intensity. 
Because the frequencies are orthogonal, multiple frequencies 
received on a column can be decomposed into their 
components with a Fourier transform, thereby allowing for a 
complete snapshot of every row/column intersection during 
every sampling frame. We refer to this signal snapshot as a 
heatmap. Our prototype is capable of sensing at about 350 
Hz. (In comparison, a traditional time-division multiplexing 
(TDM) touch controller scans the sensor one row at a time, 
and requires many sampling frames to read the entire sensor; 
this yields a slower sampling rate. While a ghost-based 
classification is possible on a TDM controller, the “one-shot” 
sampling provided by FMT provides a more robust signal.)  

A heatmap is computed by the touchscreen controller, and 
this data is transmitted to a host PC via UDP over Ethernet. 
Software on the host PC receives these packets, visualizes 
the heatmap, and performs processing to locate touches and 
perform the hand and user discrimination.  
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GhostID gets its name from a signal artifact that occurs when 
a single user touches the sensor in multiple places. Figure 5c 
illustrates a heatmap with this artifact. Recall that touching 
the sensor changes the coupling between a row and a column. 
With our sensor, we see a decrease in signal intensity since 
some of the signal is dissipated by the user’s body rather than 
being fed into the receiver. If a single user touches the sensor 
in multiple places, a signal travels from the first touched row, 
through the user’s body, and is then re-injected into the 
second touched column. We therefore detect a small increase 
in intensity of the first row’s signal in the second column’s 
receiver, and vice versa. This crosstalk does not occur if 
multiple touches are made by separate people since there is 
no path for the signal to travel from one person to another. 

In Figure 3 (left), we see a single user touching the sensor in 
two locations. These fingers strongly couple row 1 to 
column G and row 3 to column D, resulting in two strong 
touch points at 1-G and 3-D. In addition to these strong 
pathways, the signal from row 1 passes into the user’s right 
hand, through their body, and into their left hand, which is 
touching column D. Similarly, some signal from row 3 
passes in the opposite direction through to column G. 1-D 
and 3-G therefore report weaker “ghost” touches that would 
traditionally be filtered out and discarded as they do not 
represent actual touch locations.  

The strength of these ghost signals depends on the distance 
the signal must travel between the two touch points. Signals 
attenuate as they travel through the body, so shorter distances 
will result in stronger ghosting. If the signal cannot travel 
between the two points, as is the case in Figure 3 (right) when 
two different users touch the sensor, there is no ghosting. 

Figure 4 shows how this attenuation is used to determine if 
two touches come from the same hand, from two hands of 
the same user, or from multiple users. In Path A, the finger 
directly couples a row to a column with very little 
attenuation. Path B shows the short distance between two 
fingers on the same hand. Path C spans from one arm, 

through the torso to the other arm. Finally, Path D is 
effectively infinite as there is no electrical connection 
between start and end points that reside on different users. 
Through this understanding of attenuation and ghosting, our 
technique can use the strength of the ghost signals to classify 
it as coming from one of these paths. 

Because our current prototype broadcasts signals on rows 
and receives signals on columns, it is not able to identify 
ghosts when two actual touches occur on the same row or 
column. The strong signals from the actual touch locations 
will be in the same place as the ghosts, and will therefore 
mask the weaker ghost crosstalk. This limitation could be 
overcome with changes to the sensor, as discussed in the 
Future Work section of the paper. 

Signal)Processing)

This section describes the signal processing pipeline (shown 
in Figure 6) that enables touch differentiation. The incoming 
signals are passed through a Python-based software pipeline 
that consists of: pre-processing, touch detection, ghost 
detection, feature extraction, per-frame classification, multi-
frame analysis, and output of GhostID attributes (i.e., touch 
origin). The GhostID attributes are metadata that are 
associated with each touch point, and are separate from the 
touch tracking itself; this allows normal touch processing to 
occur independently of the GhostID analysis. 

 

Figure 5. (a) GhostID prototype consisting of a 10-inch sensor, 
FPGA controller, and projector; (b) the sensor surface, with 
projected feedback; (c) a heatmap visualizing two touch points 
(red and yellow) from the same hand, and the two resulting 
ghost signals (dark blue). 

 
Figure 4. Differing lengths of signal paths (A, B, C, and D) 
allow user and hand differentiation. 

 

 
Figure 3. Two touches from the same user produce ghost 
signals (blue) in addition to real touch signals (red). Two 
touches from different users do not produce ghosts. 
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Pre-processing. First, each heatmap from the touch 
controller is checked for validity and completeness. Next, we 
level the data. Due to several factors, including attenuation 
of signals across the rows of the sensor, minute variations in 
adhesive and material thickness and properties, and 
variations in connections between signal generators and 
rows, the baseline signal is not uniform across the entire area 
of the sensor. As such, each pixel (i.e., a row/column 
intersection in the heatmap) needs to be calibrated to produce 
a uniform leveling of the sensor data. We record a set of 1000 
frames without any touches, and compute an average for 
each pixel. This average is then subtracted from the incoming 
raw sensor data to yield a leveled heatmap.  
Touch detection. A touch is detected by thresholding the 
heatmap by signal strength, creating connected components 
with similar signal intensities, and then finding the location of 
the local maximum signal strength within each connected 
component. The threshold level is chosen to remove all ghost 
signals and leave us with a set of real touches, and is 
essentially equivalent to the touch detection and ghost removal 
normally performed by the touch controller. Two outputs are 
generated from this processing step: touch data is passed out 
of the pipeline up to the application level, and the heatmap is 
passed to the remainder of the pipeline to process the ghosts. 
Ghost detection and feature extraction. If there are ghost 
signals, they must by definition appear somewhere along the 
rows and columns where we have detected real touches (see 
Figure 3). To search for the ghosts, we generate a list of 
candidate locations (i.e., a bounding box on the heatmap) by 
taking each possible pair of real touches and determining the 
two locations where their ghosts would occur. Next, we 
examine each ghost candidate by computing a histogram 
profile of its column, excluding the real touch region and the 
candidate ghost region. This generates a background noise 
profile for the column, which follows a normal distribution. 
We then find the lowest signal strengths within the candidate 
ghost region, and compute z-scores to compare them to the 
background noise. All of these features (the signal strength 
for each touch, and the signal strength and z-score for each 
ghost candidate) are then fed into classifiers in the next step. 

Per-frame classification. We construct feature vectors, and 
feed them into a pair of binary classifiers (one vs. two users, 
and one vs. two hands of the same user). We evaluated a 
variety of classifiers, including k-Nearest Neighbors (kNN), 
Support Vector Machines (SVM), Decision Trees (iD3), and 
Logistic Regression. We found that a kNN classifier [6] had 
the best performance, and made use of a pair of binary 
classifiers (rather than a multiclass classifier to determine 
both user and hand classifications) in order to be able to 
independently tune the features used by each classifier. Our 
classifiers were trained on a dataset collected with known 
ground truths; details are provided in the Evaluation section 
of the paper. 

To correctly classify more than two touches, we first classify 
all possible pairs of two touches using the binary classifiers. 
Because touch origin is transitive (i.e., if touches A and B 
are from the same user, and touches B and C are from the 
same user, we know all three are from the same user), we 
can assign origins to all touches. This technique scales well 
with increasing numbers of touch points, and we have tested 
it for up to four touch points (one touch per user from four 
users).)

Multi-frame analysis.!We can further improve the accuracy 
of the classifiers by performing a classification across 
multiple frames. Our sensor is capable of producing data at a 
frame rate of about 350 Hz, and the standard for most 
displays is 60 Hz. As such, we can group up to five frames 
together without compromising the standard frame rate for 
most touch devices. We use a rolling window to group 
multiple consecutive frames, and a majority voting system 
tracks the label allotments within each group; this prevents 
brief classification errors from impacting the final result.  

Output of GhostID attributes. We output a set of attributes 
for each touch point, which allows the application layer to 
make use of our classifications. Once we output this 
information, GhostID processing can be discontinued until 
there is a change in the set of touch points (e.g., a new touch 
point appears), and thereby provide a touch grouping level of 
persistence. 

 
Figure 6. Signal processing pipeline. 
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EVALUATION))

In order to validate the performance of our prototype and 
software pipeline, we conducted a study to measure the 
accuracy of the classifications against known ground truths 
(i.e., sensor signals captured with known touch origins). We 
collected a smaller set of initial training data, followed by a 
larger dataset used for our accuracy evaluation. 

Training)Data)Collection)

Our training datasets consists of two parts. The first dataset 
contained single user data: two touches from two fingers on 
the same hand vs. two touches from fingers on different 
hands. The second dataset consisted of data for two users, 
and contained single touches from pairs of users. We 
collected both sets of data using 6 participants. All 15 
possible combinations of participants were tested in a round-
robin design. The data from these experiments was used to 
build the models used by both classifiers.)

Accuracy)Study))

This study evaluated the accuracy of GhostID differentiating 
touches from one, two, and three simultaneous users, as well 
as distinguishing one vs. two hands from a single user. Our 
study consisted of 21 participants (16 males and 5 females) 
with a mean age of 25 (sd=4) recruited from the local 
community. Participants were compensated $20. All 
participants had previous experience with capacitive touch 
devices. 

Apparatus!
We used the 10-inch GhostID prototype shown in Figure 5a, 
which is based on an opaque touch sensor with an overhead 
projector. A desktop workstation with a 3.6 GHz Intel i7 
CPU and 16 GB of RAM running Microsoft Windows 10 
was used to log the data using a custom Java application. 

Trials 
The participants were randomly divided into seven groups 
of three. Each experimental session consisted of a single 
group of three, and each group performed one session. 
Participants were seated around the GhostID prototype, and 
each was assigned a color to serve as an identifier. A trial 
consisted of a standard multi-touch gesture. Each trial lasted 
for ten seconds, during which time all heatmap data was 
logged. A color-coded prompt indicated which 
participant(s) should make what type of gesture. Gestures 
were illustrated using arrows, and participants moved their 
fingers along the specified paths, thereby providing 
consistent gesture sizes. 

The selected gestures were traditional multi-touch gestures: 
a straight swipe gesture with the index finger; a curved swipe 
gesture with the index finger; a pinch gesture with the index 
finger and thumb; two finger (index and middle) scroll; and 
three finger (index, middle, and ring) tap-and-hold. All 
gestures were performed with the right hand, unless 
indicated otherwise. 

Design!
A group session consisted of three parts. The first part 
involved participants interacting with the sensor 
individually. The second part involved all three possible 
pairs of participants interacting with the sensor. The third 
part involved all three participants interacting with the sensor 
simultaneously. 
Part!1:!Single!user!hand!differentiation!
Two types of single user gestures were performed: pinch, and 
two finger scroll. A total of 12 trials were run, which were 
performed across the entire sensor area. 

Pinch. The participants were asked to perform a pinch (back 
and forth in both directions) using their right index finger and 
thumb. Participants were then asked to do the same pinch 
gesture using their right index finger and left thumb. A right 
index finger and left thumb pinch is not a common gesture; 
most users would be more likely to use their left index finger 
for a two-handed pinch. However, we elected to use the left 
thumb to avoid introducing an additional variable into our 
comparison, since an index finger would have had a very 
different touch footprint than the thumb used for the one-
handed pinch. 

Swipe. The participants were asked to do a two finger swipe 
back and forth using their right index and middle fingers, and 
then using their index fingers from their left and right hands.  
Part!2:!Two;user!differentiation!
Participants were asked to sit facing each other and perform 
simultaneous gestures. The positions of the participants were 
switched half-way through the session to remove any 
positional bias, and every participant performed gestures 
across the entire sensor surface. The gestures performed by 
each participant were: one finger swipe, one finger curved 
swipe, two finger pinch, and two finger swipe. Because our 
current prototype cannot perform touch discrimination on 
touches that are aligned in the same column of the sensor (see 
Limitations section for a discussion of this issue), we 
positioned the gestures to avoid this configuration. 
Part!3:!Three;user!differentiation!
All three participants were asked to sit around three sides of 
the sensor and perform simultaneous gestures. Limited 
physical space on the sensor precluded gestures with a large 
surface area, so participants performed a one finger swipe. 
Positions were rotated so that each participant performed the 
gesture in all four corners of the sensor. 
Summary!
In total, our dataset contained: 
    4 gestures × 3 individuals  (Part 1) 
+ 4 gestures × 2 locations × 3 pairs (Part 2) 
+ 1 gestures × 4 locations × 1 triplet (Part 3) 
= 40 trials/session 
× 7 sessions (21 participants total) 
= 280 trials 
× ~2,174 frames/trial 
= 608,720 frames 
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Results) 
Because each trial has a known ground truth, we can 
benchmark our classifiers.  

When examining a single frame, our hand classifier (one 
hand vs. two hands) was able to correctly identify the origin 
of two touch points with a precision of 0.77 (recall = 0.76). 

Table 1 shows the performance of our multi-user classifier for 
two and three touch points. Each column shows the results for 
one experimental group (each with 3 participants) and each 
row shows the results for a category of touch points. 
Averaging across all groups, we were able to differentiate 
touches from two users 94.9% of the time (sd=10.7%) and 
three users 98.5% of the time (sd=2.4%); overall precision 
and recall are shown in the rightmost columns of Table 1. The 
performance across the groups was observed to be consistent, 
except for groups 2 and 4. This change in performance is due 
to perspiration in the hands of one participant in each of those 
groups (P4 and P10). This moisture was absorbed by the 
vellum sheet used in the current GhostID prototype, and 
generated spurious signals from the sensor that swamped the 
relatively weak ghost signals.  

If we exclude trials from P4 and P10, we achieve an overall 
performance of 99.45% (sd=0.6%) for differentiating two 
touches from two users, and 99.41% (sd=0.5%) performance 
for differentiating three touches from three different users. 
Despite the impact of the perspiration on the two 
participants, we do not consider it a problem moving 
forward, since the vellum is not a required component of the 
system. Future iterations will use a glass top layer, and 
therefore will not be subject to the same effects. Moreover, 
perspiration is not unique to our techniques. As an example, 
FTIR [12] is also susceptible to erroneous finger 
classification due to finger residues if not properly 
constructed (e.g., a malleable glue overlay of the FTIR 
surface to evenly distribute the finger pressure and keep 
finger residues away from the sensing surface).  

Our 350 Hz sensor could use a window size (i.e., the number 
of frames used by the voting system) as large as 5 while 
maintaining 60 Hz output. In order to select our window size, 
we performed an analysis using window sizes between 
1 and 100. As expected, we see an improvement in 

performance when using multiple frames, but we do not see 
significant improvements using more than 4 frames. All of 
the reported measurers in this paper are therefore based on a 
4 frame window. Finally, although we tested our system with 
three users simultaneously interacting with the sensor, the 
GhostID technology is scalable to many users and is only 
limited by the device form factor. 

Techniques!to!improve!differentiation!
The accuracy can be further increased with simple heuristics. 
For example, there are location constraints associated with 
human anatomy; if touch points are at a sufficient distance 
from each other, they cannot belong to the same hand. These 
techniques were not used in the classifier, but future work 
will leverage this information to improve recognition. 

In addition, the accuracy of our single user classifier could 
be improved with individualized per-user classifier training, 
since individuals tend to touch with different amounts of 
pressure and surface area. While this tailoring could not be 
used in a generic “walk up” situation, it could be useful for 
personal devices.  

ENABLED)TECHNIQUES)AND)SCENARIOS))
In this section we discuss some of the interaction techniques 
we have prototyped using GhostID. GhostID can extend and 
enhance some existing techniques that already exist on a 
variety of sizes of traditional capacitive touchscreens, and 
can also enable new interaction techniques for mobile 
devices that are not possible on traditional touch devices, 
including techniques previously limited to specialized multi-
user systems such as the DiamondTouch.)

Handling)Another)Hand)
These techniques leverage GhostID’s ability to differentiate 
between single-handed and bimanual interaction by one user. 

Single handed mode.!The ability to differentiate hands can be 
used to ignore undesired touches from the non-dominant 
hand that is holding the device. Accidental activation with 
the non-dominant hand is very common on most touch 
devices [43], and can interfere with the user experience. For 
instance, it can be difficult to hold a larger touchscreen 
device (e.g., a tablet) by its edges without inadvertently 
activating UI elements near the sides of the screen. With 
GhostID the user can hold the device without having to 
adjust their grip to avoid touching the screen. This is 
particularly useful for edge-to-edge touch screens where 
fringe contacts cannot be avoided.  

Bimanual interactions. In use cases where a single user 
explicitly intends to interact using both hands, GhostID can 
provide each hand with a different functionality. For 
instance, the index finger on the dominant hand could be 
used as a drawing pen while fingers on the non-dominant 
hand could be used as an eraser or as a mechanism to open a 
contextual menu [2, 21]. 

  

 

Table 1. Precision rates for user differentiation for each of our 
seven session groups. The overall precision and recall across all 
groups are shown in the rightmost columns.  
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Handling)Another)User’s)Hands)
GhostID also enables a rich set of multi-user scenarios as 
depicted in Figure 7. 

Ignoring secondary users. People frequently share content 
on a touchscreen by showing their device to someone else. 
However, it is quite easy for the second person to 
unintentionally generate touch input in the process (e.g., by 
pointing at something) and negatively impact the application 
(e.g., dismissing a full-screen image, deleting an email 
message, etc.) [2, 27]. With GhostID’s ability to distinguish 
between users, it is possible to ignore the errant touches from 
the second user. The primary user must still touch the surface 
with their non-dominant hand to provide continuous session 
level persistence for the duration of the touch, but any 
additional touch input from other users can now be muted. 
This allows the secondary user to touch the screen freely 
without disturbing the contents of the UI.  

Handoff. GhostID enables a specific interaction technique 
when handing off a mobile device to another person [14]. If 
a user passes a mobile device to someone else, as long as 
both users are in contact with the device for some moment in 
time (a natural result of handing something to someone else), 
GhostID will be able to tell that a new person is gripping the 
device. This information can be used to enable collaborative 
features or provide privacy protection by switching to a guest 
mode with restricted access. In order to return to unrestricted 
access, the primary user would need to re-identify 
themselves, which is not directly supported by GhostID. 

Collaboration. GhostID provides explicit support for 
collaboration scenarios. In large displays, where multiple 
people can interact at the same time, the notion that two 
hands belong to the same user can help maintain 
collaboration by specifically supporting actions that only 
affect one user. As one example, a drawing application can 
support multiple users painting collaboratively, but any 
brush or color changes are only applied to the ink stroke that 
belongs to the user who changed the settings [13].  

In addition, GhostID enables a wide range of multi-user 
tabletop techniques at the touch-user level of persistence. 
Many techniques have previously been explored by 
researchers using the DiamondTouch. Examples include 
Morris et al. [26] and Shen et al. [37]. We refer the reader to 
Benko et al. [3], Morris et al. [25], and Ryall et al. [32] for 
an extensive list of interaction techniques enabled by 
DiamondTouch and other multi-touch tabletops.  

Handling)Gestures)
Finally, GhostID enables extensions and disambiguations of 
traditional multi-touch gestures. 

Disambiguating gestures. We can support a richer set of 
gestures by leveraging GhostID’s ability to determine if two 
points originate from the same hand, different hands of the 
same user, or different users. From the point of view of a 

person interacting with a device, the distinction between 
these three sets of inputs is obvious. However, from the point 
of view of a traditional touch sensor, those inputs can often 
appear to be identical. GhostID allows the sensor to 
disambiguate them, and therefore enables richer gestures. 
For example, two touch points from a single hand can be 
mapped to the ‘resize’ command (i.e., a familiar ‘pinch’ 
gesture), while two touch points from a user’s left and right 
hands can be mapped to a ‘duplicate command’ (Figures 8a 
and 8b). Furthering this example, two touch points from two 
different users could tear that object in half (Figure 8c) [21, 
26]. Traditional touch technologies would have difficulty 
distinguishing these scenarios.!

Gesture granularity. There are also scenarios in which 
different gestures can be mapped to related actions [21]. For 
example, consider navigating a map on a large touch surface. 
With GhostID, different granularities can be encoded in the 
different variations of the same gesture: zooming by 
pinching with two fingers from the same hand could provide 
a fine-grain zoom, while pinching using two hands could 
provide a coarse zoom. 

  

 
Figure 7. (a) When the primary user interacts using their 
dominant hand (purple circle), accidental touches from their 
non-dominant thumb (green circle) or from a second user 
(orange square) can be ignored. (b) Handing the tablet to 
someone else triggers a handoff mode with restricted access. 

 

 
Figure 8. GhostID enables disambiguation of otherwise similar 
touch point paths. (a) A pinch with one hand zooms an image, 
while (b) two fingers on different hands of one user copies the 
image, and (c) touches from two different users tears the image. 
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LIMITATIONS)
The current setup is not without limitations. The current 
implementation only supports a touch grouping level of 
persistence. As we have described in the previous section, 
this persistence level does enable novel interactions; 
however, it is not enough for security-based interactions such 
user identification. From our experience, the ghosting 
information is not unique to an individual user and, without 
external hardware that identifies the user, ghosting 
information alone cannot be used as an identification 
method.  

In order to provide a ghost-free signal for touches 
originating from two different people, they must be 
capacitively isolated from each other. While this is the case 
in most situations, a couple of people can be capacitively 
coupled by simply holding hands. Once they are in direct 
contact with each other, signals will travel through both 
bodies. While in principle we could examine the additional 
signal attenuation due to the extended signal path and 
attempt to classify this situation, we have not yet done so. 
This limitation is most likely to arise in social use cases 
(e.g., a couple sitting together on a couch), and might 
actually open an interesting set of collaborative gaming 
applications [41]. Although we have yet to formally 
quantify capacitive coupling between individuals, our 
experience is that indirect contact (e.g., two people leaning 
on the same wooden table) does not have any impact on 
GhostID. Similarly, grounding a user will create a lower 
amount of ghosting since some of the signals will be 
dissipated before they can be re-injected. While we have 
found that the reduction in signal associated with typical 
activities (e.g., standing with bare feet on carpet) does not 
have any impact on our classification, a user who is 
thoroughly grounded (e.g., touching a grounded metal table 
frame) will not produce sufficient ghosts. 

The current prototype cannot run the GhostID classification 
on touches if more than one of those touches occur in the 
same row or column because any potential ghosting 
information is swamped by the signal from the actual touch. 
We can still register a traditional touch event; we are simply 
unable to detect if it has a ghost. In practice, this is not a 
significant limitation, since the lack of ghosting is transient. 
The ghosting only disappears during individual frames when 
the fingers are precisely aligned; as soon as they diverge, the 
ghosts reappear. A brief disappearance of ghosting during a 
gesture can therefore be mitigated by using a larger rolling 
window or other heuristics (e.g., positional information). In 
addition, this issue will be eliminated by forthcoming 
hardware improvements described below. 

Finally, our current prototype sensor suffers reduced 
accuracy if a user has particularly sweaty hands due to 
moisture effects on the topmost layer of the sensor. This 
limitation is unique to the current prototype, and will not be 
present on future iterations using impermeable top layers.  

FUTURE)WORK)
As future work, we identify two paths of hardware 
development. First, our sensor needs to be integrated with 
improved top layer materials, such as glass, or integrated 
solutions such as ITO. This will strongly reduce the effects 
of perspiration, and is a necessary step for technology 
adoption. An ITO-based version of our prototype has been 
stood up in our lab and, while not ready as of the time of this 
writing, is showing great promise. Second, our current sensor 
broadcasts signals on rows and receives signals on columns. 
This arrangement generally works well, but as discussed 
above, it cannot detect ghosting information if multiple 
touches are aligned in the same row or column. A more 
sophisticated design would eliminate this issue by making 
several changes. First, each row and column would be 
connected to a high-speed switch, which would allow the 
row or column to flip between transmitter or receiver. We 
then configure the switches so that transmitters and receivers 
are alternated on both the rows and columns. Finally, we use 
the switches to flip the transmitter/receiver status of every 
row and column several times during each frame. This sensor 
configuration will produce richer ghosting information 
(helpful information that would allow us to simplify the 
complexity of the classification algorithms), but also would 
be able to work around many touch conformations in which 
touches mask ghosts. 
From a software perspective, we intend to explore additional 
classifiers to further improve our accuracy rates. We also 
intend to explore additional heuristics to improve both our 
classification accuracy (e.g., distance between touches), as 
well as GhostID’s level of persistence (e.g., time-based 
heuristics for brief touch removals). 

CONCLUSION)
We present GhostID, a capacitive sensing technique that can 
distinguish touches from multiple users and even touches 
from different hands of the same user. Our approach 
leverages the existing signals from an FDM touch controller, 
and does not require additional hardware or changes to the 
sensor itself, making it a potential drop-in replacement for 
sensing techniques available in the current generation of 
commercial devices. GhostID is presented in the context of 
a new framework that categorized touch input 
differentiation. In addition, the value of GhostID is 
illustrated through a description of interaction techniques 
that are enabled by touch origin differentiation. 
Finally, we have just scratched the surface of potential 
applications for user and hand discrimination. We envision 
single-user interfaces using hand-discrimination that greatly 
expand the communication between user and machine, as 
well as multi-user interfaces that enable simultaneous multi-
user interactions that “just work” as expected. 
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